

University of Kentucky UKnowledge

Theses and Dissertations--Civil Engineering

Civil Engineering

2014

Quantifying The Effectiveness of a Grout Curtain Using a Laboratory-Scale Physical Model

Elliot N. Magoto University of Kentucky, elliot.magoto@gmail.com

Recommended Citation

Magoto, Elliot N., "Quantifying The Effectiveness of a Grout Curtain Using a Laboratory-Scale Physical Model" (2014). *Theses and Dissertations--Civil Engineering*. 18. http://uknowledge.uky.edu/ce_etds/18

This Master's Thesis is brought to you for free and open access by the Civil Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Civil Engineering by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royaltyfree license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student's advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student's thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above.

Elliot N. Magoto, Student Dr. L. Sebastian Bryson, Major Professor Dr. Ed Wang, Director of Graduate Studies

QUANTIFIYING THE EFFECTIVENESS OF A GROUT CURTAIN USING A LABORATORY-SCALE PHYSICAL MODEL

THESIS

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering in the College of Engineering at the University of Kentucky

By Elliot Nicholas Magoto Lexington, Kentucky Director: Dr. L. Sebastian Bryson, Associate Professor of Civil Engineering Lexington, Kentucky 2014 Copyright[©] Elliot Nicholas Magoto 2014

ABSTRACT

QUANTIFIYING THE EFFECTIVENESS OF A GROUT CURTAIN USING A LABORATORY-SCALE PHYSICAL MODEL

In the past decade, the grouting industry has made significant technological advancements in real-time monitoring of flow rate and pressure of pumped grout, stable grout mix design, and with grout curtain concepts dealing with placement and orientation. While these practices have resulted in improved construction practices in the grouting industry, current design guidelines for grout curtains are still predominately based on qualitative measures such as engineering judgment and experience or are based on proprietary methods. This research focused on the development of quantitative guidelines to evaluate the effectiveness of a grout curtain in porous media using piezometric and hydraulic flow data. In this study, a laboratory-scale physical seepage model was developed to aid in the understanding and development methodology to evaluate the effectiveness of a grout curtain. A new performance parameter was developed based on a normalization scheme that utilized the area of the grout curtain and the area of the improved media. The normalization scheme combined with model-based Lugeon values that correspond to pore pressure and flow rate measurements at different soil unit weights and grout curtain spacings, produced a mathematical equation that can be used to quantify the effectiveness of a grout curtain. This study found a relationship that takes into account soil unit weight, grout curtain spacing and a new performance parameter that can be used to help predict the effectiveness of a grout curtain.

KEYWORDS: Grout Curtain; Seepage Cutoff; Lugeon Value; Hydraulic Conductivity; Pore Pressure

Elliot Nicholas Magoto

3/10/2014

QUANTIFIYING THE EFFECTIVENESS OF A GROUT CURTAIN USING A LABORATORY-SCALE PHYSICAL MODEL

By

Elliot Nicholas Magoto

L. Sebastian Bryson, Ph.D., P.E.

Director of Thesis

Ed Wang, Ph.D., P.E.

Director of Graduate Studies

3/10/2014

To My Parents: Nicholas and Jill Magoto My Brother: Zach Magoto My Grandparents: Pete and Helen Magoto, Purcell and Louise Grilliot Girlfriend: Kelsey Peters For all their love, support and guidance.

ACKNOWLEDGEMENTS

I first off would like to send my gratitude's to Dr. L. Sebastian Bryson for his unwavering support and guidance. His knowledge and guidance has given me the opportunity to learn the skills necessary to become a successful engineer. His relentlessness has taught me to never give up and to keep moving forward. I appreciate all the time and effort that he has given me throughout my graduate career here at the University of Kentucky.

I would also like to show my appreciation to all my professors who have given me the opportunity to learn under, specifically Dr. L Sebastian Bryson, Dr. Michael Kalinski and Dr. Edward Woolrey. Without their time and effort, I wouldn't be where I am today. They have provided me with a solid technical background that I will be able to take with me as a practicing engineer.

My colleagues Kirk Jenkins, Xu Zhang, Joshua Wells, Ryan Ortiz and Travis Greenwell have all been valuable assets to the completion of my research. Their assistance with testing and preparation played a major role in the successful completion of my research.

iii

ACKNOWLEDGEMENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	. viii
Chapter 1: Introduction	1
1.1 Proposed Concept	4
1.2 Objectives of Research	5
1.3 Relevance of Research	6
1.4 Contents of Thesis	7
Chapter 2: Literature Review	9
2.1 Introduction to Grout Curtains	9
2.2 Grout Installation Techniques	10
2.3 Current Methodologies to Assess Grout Curtain Effectiveness	14
2.3.1 Monitoring Lugeon Values	14
2.3.2 Measuring Hydraulic Conductivity	20
2.3.3 Monitoring Pore Pressures	21
2.3.4 Grout Mix Design	21
2.3.5 Willowstick	22
2.4 Associated Technology	23
2.5 Case History Studies	25

TABLE OF CONTENTS

2.6	Summary
Chapter	28 Experimental Methods and Materials
3.1	Test Material – Index Testing and Material Characterization
3.2	Physical Model
3.3	Pore Pressure Measurements
3.3	B.1 Pore Pressure Transducers
3.3	3.2 Pore Pressure Transducer Calibration
3.4	Flow Rate Measurements
3.5	Lugeon Value Determination
Chapter	4: Modeling the Grout Curtain
4.1	Linear Representation of Grout Curtain-Acrylic Slats Testing and Results 37
4.1	.1 Initial Equilibrium Testing
4.1	.2 Procedures Testing With Grout Curtain and Results
4.2	Development of a New Performance Parameter–Linear Replacement Ratio 45
4.3	Area Representation of Grout Curtain-Polyvinyl Chloride Pipe Testing and
Resul	lts
4.4	Development of a New Performance Parameter – Area Replacement Index 49
4.5	Nested Pore Pressure Transducers
4.6	Pore Pressure Transducers Located at Bottom of Test Box
4.7	Summary

Chapter 5:	Relationship Verification	7
Chapter 6:	Summary and Conclusions	2
Appendix A:		5
Appendix B:)
Appendix C:		5
REFERENC	ES	5
VITA		2

LIST OF TABLES

Table 2.1: Site conditions and grouting properties of four case history studies (Hong et al.
2003)
Table 3.1: Ohio River Valley sand and Kentucky River sand soil properties. 29
Table 4.1: Grout curtain orientations for Tests 1 through 7 along with their corresponding
hydraulic conductivity and pore pressure measurements
Table 4.2: Grout curtain orientations for Tests 1, 8, 9 and 10 along with their
corresponding hydraulic conductivity and pore pressure measurements
Table 4.3: Grout curtain orientations for Tests 11 through 16 along with their
corresponding hydraulic conductivity and pore pressure measurements
Table 4.4: Raw data from corresponding to S/D=1 and dry unit weight= $12.56 \text{ kN/m}^3 \dots 55$
Table 4.5: Sigmoidal curve fitting constants from Table Curve. 63
Table 4.6: Unit weight, S/D ratio, slope, Y-intercept and R^2 values for linear best fit lines
of normalized average pore pressure versus normalized average Lugeon value plots 68
Table 4.7: Unit weight, S/D ratio, slope, Y-intercept and R^2 values for linear best fit lines
of normalized q/L versus normalized average Lugeon value plots
Table 4.8: Unit weight, S/D ratio, slope, Y-intercept and R^2 values for linear best fit lines
of area replacement index versus normalized average Lugeon value plots
Table 5.1: Site conditions and grouting properties of four case history studies (Hong et al.
2003)
Table 5.2: Calculated absolute percent errors for all case history studies

LIST OF FIGURES

Figure 1.1: Schematic of general grout curtain wall (Weaver, K. and Bruce, D., 2007)1
Figure 2.1: Teton Earthen Dam Failure in 1976 (Arthur, 1977)
Figure 2.2: Installation of a soilcrete column using jet-grouting (Hayward Baker, 2014).
Figure 2.3: Illustration of the high-mobility grouting technique (Hayward Baker, 2014).
Figure 2.4: Compaction grouting technique (Hayward Baker, 2014) 14
Figure 2.5: Typical real time monitoring and equipment and data acquisition system
(Quinones-Rozo, 2010)
Figure 2.6: Schematic Lugeon test set-up (Quinones- Rozo, 2010) 17
Figure 2.7: Houlsby's (1976) grouting applicability flow chart
Figure 2.8: Magnetic field mapped using Willowstick technology (White Paper, 2012). 23
Figure 2.9: Relationship between area replacement ratio and ground improvement factor.
(Priebe, 1995)
Figure 3.1: Site locations where the Kentucky River sand and Ohio River Valley sand
were collected
Figure 3.2: The composition of the working physical model
Figure 3.3: Three pore pressure transducers connected to the National Instruments data
acquisition system
Figure 3.4: Kulite's XCL-11-250-150SG sealed gauge pore pressure transducer model
used in this study

Figure 3.5: Calibration curve and equation associated with the three pore pressure
transducers
Figure 4.1: Effect of a simple grout curtain on pore pressure with respect to time
Figure 4.2: Eight possible slat locations along the proposed grout curtain line 40
Figure 4.3: Pore pressure versus distance from pore pressure transducer for Tests 1-7 42
Figure 4.4: Hydraulic conductivity versus distance from pore pressure transducer for
Tests 1 through 7
Figure 4.5: Graphical representation of the linear replacement relationship
Figure 4.6: Linear replacement ratio versus pore pressure graph with grout curtain on (A)
left hand side, and (B) right hand side
Figure 4.7: Geometric configurations used in the development of the area replacement
index (A) Tangent Planer (B) Tangent Circular (C) Tangent Primary-Secondary and
index. (11) rangent rianer, (D) rangent circular, (C) rangent rinnary-secondary and
(D) Discontinuous Primary-Secondary
(D) Discontinuous Primary-Secondary

Figure 4.13: Area replacement index versus normalized q/L, grouped by S/D ratios for a
dry unit weight of (A) 12.56 kN/m ³ , (B) 13.03 kN/m ³ , (C) 13.35 kN/m ³ and (D) 13.82
kN/m ³
Figure 4.14: (A) Fitted curves showing the relationship between area replacement index
versus normalized average pore pressure, grouped by S/D ratios for a dry unit weight of
12.56 kN/m ^{3} . (B) Fitted curves showing the relationship between area replacement index
versus normalized q/L, grouped by S/D ratios for a dry unit weight of 12.56 kN/m ³ 61
Figure 4.15: Linear relationship between normalized average pore pressure and
normalized q/L grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m ³ , (B)
13.03 kN/m ³ , (C) 13.35 kN/m ³ and (D) 13.82 kN/m ³
Figure 4.16: Relationship between average pore pressure and q/L grouped by S/D ratios
for a dry unit weight of (A) 12.56 kN/m ³ , (B) 13.03 kN/m ³ , (C) 13.35 kN/m ³ and (D)
13.82 kN/m ³
Figure 4.17: Relationship between normalized average pore pressure and normalized
average Lugeon values grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m ³ ,
(B) 13.03 kN/m ³ , (C) 13.35 kN/m ³ and (D) 13.82 kN/m ³
Figure 4.18: Relationship between normalized q/L and normalized average Lugeon
values grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m ³ , (B) 13.03 kN/m ³ ,
(C) 13.35 kN/m ³ and (D) 13.82 kN/m ³
Figure 4.19: Relationship between area replacement index and normalized average
Lugeon values grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m^3 , (B) 13.03
kN/m ³ , (C) 13.35 kN/m ³ and (D) 13.82 kN/m ³
Figure 4.20: S/D ratio versus m ₁ , grouped by dry unit weight

Х

Figure 4.21: Dry unit weight versus b ₂ .	74
Figure 5.1: Case history data versus predicted values plotted at dry unit weights of (A)	
22.77 kN/m ³ and (B) 23.56 kN/m ³	79
Figure 5.2: Relationship between predicted normalized average Lugeon value versus	
actual normalized average Lugeon values.	80

Chapter 1: Introduction

Grout curtains, also known as cut-off walls are vertically drilled tangent shafts that are filled with cementatious material that create a barrier to help prevent excessive seepage under a dam. Grout curtains are intended to be impervious walls that typically exist below infrastructure to minimize water seepage. Along with seepage minimization under dams, grout curtains are also found in karst terrain to minimize groundwater infiltration and subsequent erosion of the geologic formation. A generalized depiction of a grout curtain wall can be seen in Figure 1.1.

Figure 1.1: Schematic of general grout curtain wall (Weaver, K. and Bruce, D., 2007).

Dams dating back to the 1900's were predominately constructed in geologic areas consisting of karst terrain. Karst terrain is the resulting landform that is produced when

groundwater dissolves and washes away existing rock material within the underlying soil structure. Cracks, voids, sinkholes and caves are a result of this dissolving behavior. The materials susceptible to dissolving include rock such as limestone, dolomite and gypsum according to research done by Veni et al. (2001). This dissolving behavior can cause significant problems with the structural integrity of various impoundments, specifically dams. Dams located in karst terrain often times deal with significant groundwater seepage issues. Given sufficient time, groundwater will eventually erode enough of the underlying soil structure to create conditions where dam failures can occur. To prevent dam failures from occurring in karst terrain, grout curtains are typically installed. As previously mentioned, grout curtains are installed to prevent excessive seepage under dams and to minimize groundwater infiltration.

In the past decade, the grouting industry has made significant technological advancements in real-time monitoring of flow rate and pressure of pumped grout, stable grout mix design, and with grout curtain concepts dealing with placement and orientation. While these practices have resulted in a renewed appreciation of the grouting industry, current design guidelines are still predominately based on qualitative measures such as engineering judgment, experience and rules-of-thumb. Not being able to use quantifiable means to assess the effectiveness of a grout curtain, has left many engineers spending lots of valuable time and money. Even though previous studies in the past few decades such as the studies conducted by Uromeihy and Farrokhi (2012) and Ajalloeian et al. (2012) both of which evaluate the groutability of Iranian dams have shown that qualitative based approaches have worked; being able to quantify the effectiveness of a grout curtain would seem to be more beneficial.

2

Today, most grout curtain designs and installations are performed based on local rules-of-thumb and experience combined with adequate engineering judgment. Even though using these qualitative approaches have shown to work in the past, many engineers and designers have questioned whether or not qualitative approaches are the most efficient way in determining the effectiveness of a grout curtain. According to Bruce (1992), the utilization of qualitative approaches previously discussed is not the most efficient approach when considering the effectiveness of a grout curtain. It is believed that lots of money, time and effort are lost when performing an extensive grouting program using qualitative approaches as the predominate basis. Qualitative based approaches have shown to work with the utilization of excessive materials and time. However, with today's society combined with the economical issues encountered, clients today do not have the unlimited resources at their disposal as they once did. Thus, it is important to develop a quantitative approach to predict the effectiveness of a grout curtain prior to installation. A quantitative approach would help engineers and designers optimize grout curtain performance while minimizing factors such as time, labor and cost.

Therefore, this research focused on the development of quantitative guidelines to evaluate the effectiveness of a grout curtain design in porous media using piezometric and hydraulic flow data. In this study, a laboratory-scale physical seepage model was developed to aid in the understanding and development methodology to evaluate the effectiveness of a grout curtain. A new performance parameter was developed based on a normalization scheme that utilized the area of the grout curtain and the area of the improved media. The normalization scheme combined with model-based Lugeon values

that correspond to pore pressure and flow rate measurements at different soil unit weights and grout curtain spacings, produced a mathematical equation that can be used to quantify the effectiveness of a grout curtain. This study found a relationship that takes into account soil unit weight, grout curtain spacing and a new performance parameter that can be used to help predict the effectiveness of a grout curtain.

1.1 Proposed Concept

In order to develop a quantifiable relationship that assesses the effectiveness of a grout curtain, a new performance parameter had to be established as previously mentioned. Through much deliberation it was believed that a performance parameter similar to Priebes (1991) and Priebes (1995) area replacement ratio on vibro replacement columns for ground improvement could be utilized to help develop a new performance parameter that would aid in the quantification of a grout curtain. The area replacement ratio parameter presented in Priebes (1991) and Priebes (1995) research utilized various areas with respect to the improved and unimproved ground. This research uses an area replacement ratio combined with other parameters such as poisson's ratio and friction angle to help determine ground improvement effects on non-compactible cohesive soils utilizing load bearing columns of well compacted coarse grained backfill. Unfortunately, no data has been presented using the area replacement ratio as a parameter to help quantify the effectiveness of a grout curtain. However, since the installation of vibro replacement columns for ground improvement is similar to the installation of grout columns for a grout curtain, a new performance parameter based on the area replacement ratio seemed applicable. Therefore, this research utilized a new performance parameter

similar to the area replacement ratio presented in Priebe (1991) and Priebe (1995) as a key component to quantifying the effectiveness of a grout curtain.

Along with the development of a new performance parameter, a laboratory-scale seepage model was an essential component to this research. The laboratory-scale seepage model will be used to investigate various piezometric and hydraulic flow data corresponding to various simulated grout curtain concepts. Previous research has been conducted using laboratory-scale models (Luofenga et al., 2012) to explore various seepage behaviors that develop with the presence of a highly permeable sand foundation. Similar to Luofenga et al., 2012 study, a research team explored seepage behavior with respect to slope stability upon failure of a dam (Awal et al., 2009). Additionally, another study (Liua et al., 2003) successfully utilized a laboratory-scale model to determine water flow patterns through foundations similar to seepage through a concrete dam. All three previous studies mentioned the difficulty in modeling highly complex geological insitu field conditions based on numerical modeling. Thus, it was concluded that laboratoryscale models were a necessity in the understanding and development of seepage behaviors with their corresponding situations. Since, it has been proven that laboratoryscale models can successfully aid in the understanding of seepage behavior, the use of a laboratory-scale seepage model seems applicable for quantifying the effectiveness of a grout curtain.

1.2 Objectives of Research

The goal of this research was to develop a laboratory-scale physical seepage model that would help elucidate general seepage behavior that could be used to establish

a means of evaluating the effectiveness of grout curtain quantitatively rather than qualitatively. Therefore, the objectives of this research were as follows:

- Analyze current methods used to assess the effectiveness of a grout curtain
- Develop a laboratory-scale physical seepage model that would help investigate specific behavior related to seepage in porous media
- Develop a new performance parameter that would aid in the quantification of effectiveness of a grout curtain
- Develop a quantifiable relationship between the performance parameter and fundamental design parameters associated with the grout curtain
- Assess the general applicability of the new quantifiable relationship using case history studies to show that the quantifiable relationship can be scaled

1.3 Relevance of Research

As mentioned previously, lots of money and time are spent on developing and performing extensive grouting programs to improve the integrity of dams and impoundments based on qualitative measures. The current methods used to assess the effectiveness of a grout curtain, combined with today's current economical issues have created a need for a quantifiable relationship to assess the effectiveness of a grout curtain. Therefore, this research was established to develop a quantifiable relationship to assess the effectiveness of a grout curtain that could be used by engineers to help minimize factors such as time, cost and labor while providing an adequate solution. The quantifiable relationship that assesses the effectiveness of a grout curtain can be used to predict the behavior of simulated grout curtains prior to installation. This relationship

allows engineers to have more control while optimizing the design of a grout curtain. This relationship avoids the use of rules-of-thumb and qualitative approaches currently used by industry to assess the effectiveness of a grout curtain. It is believed that this quantifiable relationship can also be used in ground improvement.

1.4 Contents of Thesis

Chapter 2 introduces the idea of grout curtains and current methodologies used to assess the effectiveness of grout curtains which entail Lugeon, hydraulic conductivity and pore pressure values. Accompanying this information, case histories are presented that are the primary bases for which the quantifiable relationship presented in this research is verified.

Chapter 3 describes the test materials used in this research. Along with test material descriptions, the development and description of the laboratory-scale physical seepage model is discussed herein.

Chapter 4 describes the associated test procedures that aided in the development of a quantifiable relationship. Test data and results associated with the testing procedures are presented as well. The development of a new performance parameter is described and addressed. Chapter 4 also presents the analysis that was performed during this research. This chapter describes and evaluates the trends observed during the experimentation portion of this research. These generalized trends were used in the development of a quantifiable relationship that can be used in assessing the effectiveness of a grout curtain.

Chapter 5 presents case history data that was used to verify the new quantifiable relationship. Case history studies will help assist in determining the accuracy of this relationship.

Chapter 6 recaps the discussion presented in this research in its entirety. Final conclusions brought forth by this research are summarized and discussed. A brief discussion of future research recommendations is presented.

Chapter 2: Literature Review

2.1 Introduction to Grout Curtains

Groundwater seepage under dams and other impoundments is a significant problem that geotechnical engineers are encountering more and more every day. As dams continue to age, groundwater seepage issues are becoming more prevalent. If groundwater seepage issues are left unaccounted for, significant problems can cultivate. Past history has shown that groundwater seepage under dams and other impoundments can cause significant problems not just for the owner, but to the surrounding communities. Problems associated with prolonged groundwater seepage under dams and impoundments have led to breaches. For example, the Teton Earthen Dam located in the eastern part of Idaho failed due to excessive seepage through the earth fill dam. The permeable loess core material combined with rock fissures along the abutments of the dam, allowed for significant seepage through and around the dam (Arthur, 1977). Figure 2.1, shows a picture of the Teton Earthen Dam failure.

Figure 2.1: Teton Earthen Dam Failure in 1976 (Arthur, 1977).

The seepage through the earthen dam caused structural degradation ultimately leading to the breach of the dam. Tremendous damage resulted in the breach of the Teton Earthen Dam. Significant flooding occurred in the communities just downstream of the dam. Damages were estimated to be nearly one billion dollars. Unfortunately, the flooding due to the breach of the dam claimed 14 lives. As can be seen, groundwater seepage under dams can introduce significant issues to the structural integrity of dams and other impoundments.

To avoid such horrific circumstances like the Teton Earthen Dam failure, the use of grout curtains has been proven to successfully mitigate groundwater seepage issues that are typically encountered at dams and other impoundments. Grout curtain walls are being incorporated in more dam construction designs since it is currently the most effective approach to mitigating seepage problems. Grout curtains are a cost effective way to diffuse seepage issues due to the low cost of the grout material. It is important to note that prior to the 1950's steel sheet piles were utilized to create impermeable walls similar to grout curtains as pointed out by Powers et al. (2007). However, literature (Powers et al., 2007) has shown that grout curtain walls outperform impermeable walls constructed of steel sheet piles with respect to factors such as cost and seepage mitigation. The mere cost of steel has precluded the use of steel sheet piles as a viable solution for seepage mitigation.

2.2 Grout Installation Techniques

There are three primary grout installation techniques that are widely used today in the civil engineering industry. The three grout curtain techniques that are commonly used

today which are highlighted in the research done by Yong-Jiang and Xing-Wang (2012) include jet-grouting, high-mobility grouting, and compaction grouting. The goal of all three installation techniques is to simply prevent seepage from occurring under water-retaining structures, specifically dams.

Jet-grouting is a technique that uses high velocity and high pressure jets to hydraulically replace poor rock or in-situ soil material with a cementatious material known as grout. Specialized machinery connected to a grout monitoring system allow for the placement of grout. The process of jet-grouting is fairly simplistic. High velocity grout jets connected to a drill-stem allow for insitu soil to be eroded then mixed. The composition of insitu soil and grout is commonly referred as soilcrete (Hayward Baker, 2014). Figure 2.2 illustrates the installation of a soilcrete column using jet-grouting.

Figure 2.2: Installation of a soilcrete column using jet-grouting (Hayward Baker, 2014).

Given adequate time for set-up, the soilcrete columns cure and become high strength, low permeability material. Soilcrete columns are installed at predetermined locations where seepage issues are expected. Soilcrete columns are installed to help prevent groundwater seepage from occurring under dams and other impoundments. This technique is very versatile since grouting can take place above or below the ground water table and can be used in a wide range of soils from high plasticity clays to cohesionless sands.

High-mobility grouting uses the flow of a pressurized cementatious grout material. Over time, the grouting material enters into the crevices of the underlying soil causing the grout and soil to bind together. Figure 2.3 presents the high-mobility grouting technique.

Figure 2.3: Illustration of the high-mobility grouting technique (Hayward Baker, 2014).

When performing high-mobility grouting for dams or other impoundments, it is imperative that the size of the pores or void spaces of the underlying soil material are matched to the particle size of the grout being applied. Having the appropriate grout with respect to particle size will allow for the grout material to enter the pore and void spaces of the underlying soil material. If the particle size of the grout is larger than the pore and void spaces of the underlying soil, grout will unable to enter the pore and void spaces. This type of grouting allows for increased strength properties such as cohesion, as well as decreased permeability.

Compaction grouting is another common technique used by industry today. Compaction grouting utilizes low viscosity grout to displace and densify loose soils. Also, compaction grouting is performed to stabilize large void spaces known as sinkholes by using a low-mobility grout mixture (Hayward Baker, 2014). The pressurized grout is injected into the ground by a pipe. As the grout is continuously injected, the pipe is slowly raised, forming a bulb like structure. For further clarity refer to Figure 2.4, which illustrates the compaction grouting technique.

Figure 2.4: Compaction grouting technique (Hayward Baker, 2014).

The injected grout displaces the loose surrounding material. During the displacement and expansion of the grout material, geotechnical properties such as density, friction angle, and stiffness are increased. This technique reduces permeability while providing additional strength to existing underlying stratigraphy.

2.3 Current Methodologies to Assess Grout Curtain Effectiveness

2.3.1 Monitoring Lugeon Values

Monitoring Lugeon values during the installation of a grout curtain is the current state-of-the-practice for assessing grout curtain effectiveness. Lugeon values are defined as the injected volume of water in a length of time per length of rock beneath the reference elevation (Lugeon, 1933). The most common units attributed to the Lugeon value is 1 liter/minute per meter at a reference pressure of 1 MPa. Although the Lugeon

value is similar to hydraulic conductivity, the Lugeon value is typically used in rock masses in which water travels through cracks in rocks, whereas hydraulic conductivity is used in conjunction with water traveling through soil pore space. Monitoring Lugeon values has many benefits. Benefits of ascertaining Lugeon values include the determination of flow characteristics, provide a sound basis for the selection of an appropriate grout mix, and most importantly for quality control purposes (Weaver, K. and Bruce, D., 2007). Lugeon values are used combined with qualitative measures such as engineering judgment and rules-of-thumb (Bruce, 1982; Quinn et al., 2011; Berhane and Walraevens, 2013) to address the effectiveness and structural integrity of grout curtain walls. Lugeon values have been increasingly used as a means to assess quality control of grouting operations due to technological advancements in data acquisition systems and real time monitoring equipment. According to Houlsby (1976), quality assurance of a grout curtain with the use of Lugeon values is a key component to assessing the effectiveness of a grout curtain. A typical real time monitoring equipment and data acquisition system currently used in industry can be seen in Figure 2.5. The combination of real time monitoring equipment and data acquisition systems have allowed researchers (Sasaki and Tosaka, 2012; Sadeghiyeh et al., 2013) to monitor Lugeon values during grout curtain installation procedures. As the costs for real time monitoring systems and data acquisition systems start to decline due to competitive markets, Lugeon values are going to become even more widely used.

Figure 2.5: Typical real time monitoring and equipment and data acquisition system (Quinones-Rozo, 2010).

2.3.1.1 Lugeon Test Procedures

The most common insitu testing procedure used to assess the need for foundation grouting at dams and other impoundments is the Lugeon test, also known as the packer test. The original Lugeon test was developed by Maurice Lugeon in 1933. With technological advancements in real time monitoring equipment, much research has been conducted on the applicability of the original Lugeon test over the years. Research done by Houlsby (1976) resulted in an updated Lugeon test that allows for tests to be conducted over a wider range of pressures, while using the same principles used in the development of the original Lugeon test. The updated Lugeon test, commonly referred to as the modified Lugeon test, is the current industry standard for ascertaining Lugeon values. Unlike the original Lugeon test developed by Maurice Lugeon, the modified Lugeon test consists of 5 consecutive stages. The first three stages are completed at increasing pressures while the last two stages are completed at decreasing pressures.

During each stage, water pressure is held constant, while pumping as much water through the test interval as possible. A schematic figure illustrating a Lugeon test configuration is presented in Figure 2.6.

Figure 2.6: Schematic Lugeon test set-up (Quinones- Rozo, 2010).

During each stage, flow rate and pore pressure measurements are taken. These measurements are subsequently used to calculate a Lugeon value based on an equation presented in Houlsby (1976) and Quinones-Rozo (2010). The equation presented in Houlsby (1976) and Quinones-Rozo (2010) is the standard equation that is currently being used by industry to determine Lugeon test values, which can be seen in Equation 1.

$$LV = \alpha \left(\frac{q}{L}\right) \left(\frac{P_0}{P}\right) \tag{1}$$

www.manaraa.com

where LV = Lugeon value, $\alpha =$ unit system coefficient, q = flow rate = Q/t where Q = total volume of water discharged and t = total time of test, L = test interval length of the representative test sample, P_0 = reference pressure = 1 MPa and P = water injection pressure.

The calculated Lugeon values are then assessed using Houlsby (1976) flow chart which can be seen in Figure 2.7 to determine whether or not grouting is warranted.

WHEN PERMEABILITIES ARE THOSE SHOWN BELOW, OR TIGHTER.

Figure 2.7: Houlsby's (1976) grouting applicability flow chart.

However, the use of Houlsby (1976) chart is more of a qualitative based approach or ruleof-thumb rather than a quantitative based approach. Lugeon values are not the only factor when determining if grouting is appropriate. Houlsby's (1976) research pointed out that other qualitative factors exist that should be taken in consideration, such as geological and other local factors. The grouting industry finds itself in an unfortunate situation where grout curtain effectiveness is determined by a qualitative based approach rather than a quantitative based approach.

2.3.1.2 Shortcoming of the Lugeon Test

Selecting an appropriate representative sample at a test site is a major drawback to the Lugeon test. The range of a single Lugeon test with a length interval of 10 feet is said to only encompass a 30 foot radius around the bore hole of interest (Bliss and Rushton, 1984). Since a Lugeon test only accurately depicts a limited area surrounding a bore hole, it is imperative to have a proper representative sample that takes into account the underlying soil material. However, if proper representative samples of the underlying soil material are obtained, Lugeon values are an appropriate measure to help aid in the quantification of the effectiveness of a grout curtain.

2.3.2 Measuring Hydraulic Conductivity

Grout curtain effectiveness is sometimes evaluated based on the degree of which in-situ hydraulic conductivity is reduced. In a previous study (Cotton and Matheson, 1990) conducted to evaluate the effectiveness of a grout curtain, hydraulic conductivity measurements were used to quantify effectiveness. In this study, effectiveness of a grout

curtain was based on hydraulic conductivity measurements with varying grout curtain depths. This study found that an effective grout curtain is not achieved until the grout curtain hydraulic conductivity values is three to four orders of magnitude less than that of the surrounding material. However, the Cotton and Matheson (1990) study used hydraulic conductivity values through a homogenous soil mass as opposed to a fractured mass often times seen while grouting.

2.3.3 Monitoring Pore Pressures

Determining the effectiveness of a grout curtain using solely pore pressure measurements is uncommon. However, one researcher compared predicted and observed behavior of pore water pressure inside an Alavian earthfill dam in Iran (Aminfar et al., 2009). This study also investigated the effects pore water pressures had on the foundation of the dam by looking at the distribution of pore water pressures. Beyond this study, there is little data that has been presented using solely pore pressures to evaluate the effectiveness of a grout curtain.

2.3.4 Grout Mix Design

Early studies evaluating the effectiveness of a grout curtain were primarily based on the performance of the grout mix design. There were several researchers (Bodocsi and Bowers, 1991; Anagnostopoulos and Kadjispyrou, 2004; Ozgurel and Vipulanandam, 2005; Lirer et al., 2006) who investigated various grout mix design parameters, such as workability, strength, and durability of the grout material under different conditions, to help evaluate the performance of grout curtains. However, these researchers did not evaluate the influence of the installation sequence of grout curtains on the overall effectiveness.

2.3.5 Willowstick

Willowstick is a recently developed technology that attempts to define and model complex subsurface water systems using electromagnetic fields (White Paper, 2012). Willowstick technology utilizes the placement of strategically placed electrodes in conjunction with a power supply to help enhance magnetic fields that can assist in modeling preferential groundwater flow paths (White Paper, 2012). Figure 2.8 illustrates modeling done by Willowstick technology. Unlike typical electromagnetic and resistivity methods, the Willowstick technology understands that flow paths can be effectively modeled using electrode probes due to their thorough understanding of water content and subsurface electrical conductivity (White Paper, 2012). This technology was developed to be a cost effective method to modeling complex subsurface water systems. The traditional method of direct observation through the drilling of wells is too time consuming, labor intensive and expensive. The Willowstick technology capitalizes on low cost and increased safety factors. However, this may be considered state-of-the-art, it is not currently widely used by consultants. The research presented herein focused on readily available technologies currently used in industry. The Willowstick Technology was not used for this research. It is presented briefly herein for completeness. Further, future research using this technology is recommended.

Figure 2.8: Magnetic field mapped using Willowstick technology (White Paper, 2012).

2.4 Associated Technology

As mentioned earlier in Chapter 1, the development of a new area performance parameter to assess the effectiveness of a grout curtain is essential to the success of this research. However, earlier studies (Bruce, D., 1982; Bruce, D., 1992; Uromeihy and Farrokhi, 2012; Gurocak and Alemdag, 2012) fail to use a performance parameter based on areas to assess the effectiveness of a grout curtain. These studies solely utilized Lugeon values to assess the effectiveness of a grout curtain. However, the studies conducted by Heinz Priebe in 1991 and 1995, utilized an area replacement ratio to determine an improvement factor which helps quantify the effectiveness with respect to ground improvement. Priebe (1991) and Priebe (1995) defined the area replacement ratio as the area of the improved ground divided by the total area of the unimproved ground. Equation 2 shows the area replacement ratio expression.

Area replacement ratio =
$$\frac{A}{A_C}$$
 (2)

where A = total area of the improved ground (area of the column(s)) and A_c = total area of the unimproved area.

The area replacement ratio is an expression that identifies the proportionality between the improved ground and unimproved ground. With further analysis, Priebe (1995) discovered a relationship that relates the area replacement ratio to an improvement factor (n) seen in Equation 3.

$$n = 1 + \left(\frac{A_C}{A}\right) \left(\frac{5 - A_C/A}{4(\tan^2(45 - \varphi_c/2))(1 - A_C/A)} - 1\right)$$
(3)

where n = improvement factor, A = total area of the improved ground, A_c = total area of the unimproved area and φ_c = friction angle of the backfill material.

As can be seen by the relationship expressed in Equation 3, the ground improvement factor is a function of the reciprocal of the area replacement ratio and friction angle of the associated backfill material. Going a step further, Priebe discovered that the ground improvement factor was a function of poisson's ratio as well. Figure 2.9 illustrates the relationship from Equation 3 as a function of poisson's ratio.

Figure 2.9: Relationship between area replacement ratio and ground improvement factor. (Priebe, 1995).

As seen in Figure 2.9, at a given area replacement ratio, friction angle and poisson's ratio, a ground improvement factor can be determined. This area replacement ratio provides a means to quantify the effectiveness of ground improvement. Little data has been presented using the area replacement ratio to evaluate the effectiveness of a grout curtain. However, it is believed that some type of area replacement ratio similar to the one Priebe (1991) and Priebe (1995) presented on ground improvement methods could be utilized in quantifying the effectiveness of a grout curtain.

2.5 Case History Studies

Four case history studies were investigated during this research. Case history data was obtained, to be used as the primary basis for which findings presented herein could be verified. Four separate dam structures were investigated in Hong et al. (2003)

research, which will later be used in thesis. The Hong et al. (2003) research investigated cut-off effects that are associated with rock grouting at various dam facilities using several parameters such as rock quality designation (RQD), injected cement volume, grout pressure and Lugeon values. The relationships that developed between these parameters were used in an attempt to develop a standard dam construction management program. Site properties, conditions and grouting properties can be seen in following table.

Table 2.1: Site conditions and grouting properties of four case history studies (Hong et al.2003).

	Site 1	Site 2	Site 3	Site 4
True of Dom	Concrete Face	Gravity Concrete	Concrete Face	Concrete Face
Type of Dam	Rock Fill Dam	Dam	Rock Fill Dam	Rock Fill Dam
Type of Rock	Metamorphic	Sedimentary	Sedimentary	Sedimentary
Number of Holes	231	35	28	41
Depth of Holes (m)	40	20	20	40
Grout Spacing	1 column with 1.5 m spaced holes	ith 1.5 2 columns at 3.0 m zigzag interval; 3.0 m spaced holes 1 column with m spaced ho		2 columns at 3.0 m zigzag interval; 3.0 m spaced holes
Span of Grout Curtain (m)	347	105	42	123
Average Lugeon Value Before Grouting	3	3.9	11	2.37
Average Lugeon Value After Grouting	1	1.9	3	1
Injection Pressure (Mpa)	0.39-2.45	0.15-0.59	0.15-0.59	0.29-2.45
Assumed Grout Column Diameter (m)	1.016	1.016	1.016	1.016

However, the conclusions made in this research were predominately qualitatively based rather than quantitatively based. For research to be beneficial, relationships and behavior must be quantifiable. The research presented herein assessed the effectiveness of a grout curtain quantifiably.

2.6 Summary

As previously mentioned earlier in this thesis, monitoring Lugeon values during the installation of a grout curtain is the current state-of-practice when assessing the effectiveness of a grout curtain. It is believed that Lugeon values combined with a new performance parameter similar to the one presented by Priebe (1991) and Priebe (1995) could lead to a quantifiable relationship that helps predict the effectiveness of a grout curtain prior to installation. With very little data relating Lugeon values to a performance parameter that takes into account area, the need for further experimentation is proven necessary. However, this experimentation needs to be done using a laboratory-scale physical seepage model. The shear amount of equipment needed along with the associated costs, deemed a field monitoring program impractical.

Chapter 3: Experimental Methods and Materials

3.1 Test Material – Index Testing and Material Characterization

All testing during the study was performed on two natural sands that were taken from sites located in the state of Kentucky. The first test sand used came from the banks of the Ohio River, near Newport, Kentucky. The second test sand was found along the banks of the Kentucky River directly North of Frankfort, Kentucky. The test sands herein will be referenced as Ohio River Valley sand and Kentucky River sand. The exact site locations where the Ohio River Valley sand and Kentucky River sand was found can be seen in Figure 3.1.

Figure 3.1: Site locations where the Kentucky River sand and Ohio River Valley sand were collected.

Initial index testing on the Ohio River Valley sand and Kentucky River sand consisted of four separate ASTM tests. The ASTM tests performed on the sand include

particle-size distribution of soils using sieve analysis (ASTM D6913), specific gravity (ASTM D854), maximum index unit weight using a vibratory table (ASTM D4253) and minimum index unit weight (ASTM D4254). Both test sands were a coarse, poorly graded sand (SP) according to the Unified Soil Classification System (USCS). However, the particle grain sizes of the Kentucky River sand were much finer than the Ohio River Valley sand. The test results from the various ASTM tests performed on the Ohio River Valley sand and Kentucky River sand are populated in Table 3.1. To view recorded data from the particle-size distribution sieve analysis and specific gravity test refer to Appendix A.

Table 3.1: Ohio River Valley sand and Kentucky River sand soil properties.

Test Sand	Classification	Gs	D ₁₀ (mm)	D ₃₀ (mm)	D ₆₀ (mm)	Maximum Dry Unit Weight (kN / m^3)	Minimum Dry Unit Weight (kN / m^3)
Ohio River Valley Sand	SP	2.65	0.30	0.50	0.81	19.08	15.27
Kentucky River Sand	SP	2.67	0.11	0.17	0.21	18.42	12.01

Where D_{10} = the diameter in the particle-size distribution curve corresponding to 10 percent finer, D_{30} = the diameter in the particle-size distribution curve corresponding to 30 percent finer, D_{60} = the diameter in the particle-size distribution curve corresponding to 60 percent finer and Gs = specific gravity.

3.2 Physical Model

A laboratory-scale physical seepage model was developed to aid in the understanding and development of geotechnical trends that evaluate the effectiveness of a grout curtain. All testing during this study was performed in a non-conductive test box. The inside width, length and height dimensions are 595-mm, 595-mm and 610-mm respectively. The box was constructed using polycarbonate for the sides, fiberglass angles and shims and an acrylic base (Huff, 2010). A silicon based product was used to prevent water from leaking through the cracks in between the polycarbonate siding and acrylic base. Figure 3.2 shows the configuration of the physical model from plan view.

Figure 3.2: The composition of the working physical model.

The model consisted of upstream and downstream drainage media, with the test sand sandwiched in between. The drainage media consisted of vertical layers of gravel

that were approximately 75-mm thick. The test sand section was approximately 445-mm thick. A thin piece of geosynthetic fabric was used between the sand and the gravel on both the upstream and downstream side to prevent infiltration of fines into the gravel. Seepage was achieved by pumping water into the physical model on the upstream side and being drained on the downstream side.

To reach a desired test unit weight, the weight of oven dry test sand was measured. The sand was oven dried for 24 hours. The test sand was placed in three separate layers. Each layer was approximately 17.3-cm thick. Upon placement of each layer, the test sand was compacted. A 22.68 kg weight dropped from half a meter high onto a flat surface was used to reach the necessary test unit weights. A flat surface was used to allow for equal force distribution across the entire area of the test media. This allowed for a uniform compaction effort.

3.3 Pore Pressure Measurements

To measure various pore pressures within the physical model for this study, three miniature pore pressure transducers were utilized as piezometers and installed at predetermined locations in the test box. In this study, pore pressure values were measured using Kulite XCL-11-250-150SG sealed gauge miniature pore pressure transducers connected to a National Instruments data acquisition system. Figure 3.3 shows three transducers connected to the National Instruments data acquisition system.

Figure 3.3: Three pore pressure transducers connected to the National Instruments data acquisition system.

LabVIEW 2012 software was utilized to acquire and analyze the data. The data acquisition system combined with the development of a program within the LabVIEW 2012 software, made it possible to convert electrical readings to their corresponding pore pressure measurements. To further understand the step-by-step process of creating the program, refer to Appendix B.

3.3.1 Pore Pressure Transducers

The specific miniature pore pressure transducer model utilized in this study of the evaluation of the effectiveness of a grout curtain was a XCL-11-250-150SG sealed gauge pore pressure transducer manufactured by Kulite which can be seen in Figure 3.4. Each individual pore pressure transducer had a fully active four arm Wheatstone Bridge. The

XCL-11-250-150SG miniature sealed gauge pore pressure transducers were rated at 1.03 MPa well within the ranges of pressures that are expected in the physical model.

Figure 3.4: Kulite's XCL-11-250-150SG sealed gauge pore pressure transducer model used in this study.

3.3.2 Pore Pressure Transducer Calibration

Self-verification of the calibration of the XCI-11-250-150SG pore pressure transducers was essential in producing reliable data for this study. According to Kulite, the XCL-11-250-150SG was calibrated in a water-filled pressure tank. To verify that the XCL-11-250-150SG transducers would provide reliable data for this study, the pore pressure transducers were placed at various heights in a acrylic cylindrical tube that was filled with saturated test sand. Several readings were taken at different known pressure increments to verify that the pore pressure readings coming from the pore pressure transducers were indeed accurate. Known pressure increments were determined by multiplying the unit weight of water by the height. Pore pressure measurements taken by the pore pressure transducers were compared to various known pore pressures to develop

a calibration equation. Pore pressure measurements were taken at the corresponding actual pressure readings of 0, 2.76, 4.14, 5.52 and 6.90 kPa. Figure 3.5 shows the calibration curves associated with the three pore pressure transducers used in this study.

Figure 3.5: Calibration curve and equation associated with the three pore pressure transducers.

Each pore pressure transducer was calibrated individually, thus each pore pressure transducer has a corresponding calibration equation. The calibration equations used in this study are given as:

$$U_{ACT,13} = 1.022(U_{MEA,13}) + 0.0217 \tag{4}$$

$$U_{ACT,12} = 0.96(U_{MEA,12}) + 0.1936 \tag{5}$$

$$U_{ACT,14} = 0.9722(U_{MEA,14}) + 0.4313 \tag{6}$$

where U_{ACT} = actual pore pressure in kPa and U_{MEA} = measured pore pressure in kPa. Manually calibrating the three pore pressure transducers assured that the measured pore pressures in the test box were in fact accurate.

3.4 Flow Rate Measurements

Along with pore pressure measurements, flow rate measurements were also utilized to evaluate the effectiveness of a grout curtain. Measuring flow rates is a common measurement that is taken when trying to assess the efficiency of a grout curtain. Flow rate is an easy parameter to measure since there is no need for extensive equipment. Also, measurements can be taken in timely fashion. Several studies (Bruce, D., 1982; Nappi, M. et al., 2005; Saeidi, O. et al., 2013) used flow rate measurements to help assist in determining the effectiveness of a grout curtain, similar to this study. Flow rate values were determined using an approach similar to a constant head test. The water level on the upstream side of the box was held constant, while being drained on the downstream side. The volume of water coming out of the box was captured and measured over a specified time interval. A flow rate measurement is calculated using the following equation:

$$q = \frac{Q}{t} \tag{7}$$

where q = flow rate, Q = total volume of water discharged and t = total time interval of test.

The flow rate measurements were used as an input parameter in the Houlsby (1976) and Quinones-Rozo (2010) Lugeon value equation presented in Chapter 2, which helps in the quantification of the effectiveness of a grout curtain.

3.5 Lugeon Value Determination

Lugeon values were a key component to this study of quantifying the effectiveness of a grout curtain. Studies such as Hong (2003), Ajalloeian et al. (2012),

and Parrock et al (2010) used Lugeon values as the primary factor in determining the effectiveness of a grout curtain under a dam. With this being said, Lugeon values were incorporated into this study to not only be consistent with the current state-of-thepractice, but also to allow for model verification which will be discussed later in this thesis. Since the study was conducted in a laboratory-scale physical seepage model as opposed to out in the field, slight modifications in the determination of Lugeon values were taken. This research measured flow rates similar to a standard Lugeon test. The volume of water flowing through the porous test media was measured over a specified time interval. However, the type of pressure measurements utilized in this research varied slightly from the pressure measurements of a standard Lugeon test. A standard Lugeon test measures a water injection pressure (P), which is the pressure at which water is pumped through a porous media. However, the equipment available for this research was unable to measure a water injection pressure. Pore pressure measurements were utilized to help determine corresponding Lugeon values instead. Since this research did not measure water injection pressures directly, "true" Lugeon values were unable to be obtained. However, allowing sufficient time for pore pressure measurements to reach a state of equilibrium, allowed for pore pressure measurements to be used as water injection pressures. Although this research did not strictly measure "true" Lugeon values, it is still a reasonable approximation.

Chapter 4: Modeling the Grout Curtain

Two separate test procedures were used to model the grout curtains for this study. The first test procedure utilized flat acrylic slats to simulate grout columns while using Ohio River Valley sand as the test media. The second test procedure used polyvinyl chloride (PVC) pipes and Kentucky River sand. Flat acrylic slats were used in an attempt to quantify the effectiveness of a grout curtain based on lengths. PVC pipes were used in a similar fashion as the flat acrylic slats. However, PVC pipes were utilized to address the effectiveness of grout curtain based on areas. Using PVC pipes allowed for an accurate geometric representation of a true grout curtain. The test media changed between the two test procedures due to quantity issues. Both these sands classified as a poorly graded sand (SP) according to Unified Soil Classification System (USCS). However, comparing the D_{10} values for both of the test samples, it is evident that particle grain size of the Kentucky River sand is much finer than the particle grain size of the Ohio River Valley sand. Both procedures measure pore pressures and volume of discharge as subsequent simulated grout columns are placed in the test media in various orientations.

4.1 Linear Representation of Grout Curtain-Acrylic Slats Testing and Results

For this study, only one of three calibrated pore pressure transducers was installed at a pre-determined location within the soil profile. The pore pressure transducer was placed directly in the center of the test media. Pore pressure measurements along with corresponding volume discharge measurements were subsequently taken during the various installation sequences of the simulated grout curtain under a constant head. The volume discharge measurements were taken to calculate corresponding hydraulic

conductivity values based on constant head methodology. The combination of volume discharge measurements and several known dimensional parameters of the test media within the laboratory-scale physical seepage model allowed for the determination of hydraulic conductivity values based on the following equation.

$$K = \left(\frac{Q}{t}\right) \left(\frac{\Delta H}{L}\right) \left(\frac{1}{A}\right) \tag{8}$$

where K = hydraulic conductivity, Q = volume of water being discharged, t = time interval, $\Delta H =$ total head, L = length of the test media and A = cross-sectional area of test media.

Hydraulic conductivity values were determined in an attempt to identify different trends that could be used to help quantify the effectiveness of a grout curtain. Hydraulic conductivity values were believed to be a possible parameter to assess the effectiveness of a grout curtain similar to the research presented by Cotton and Matheson (1990).

4.1.1 Initial Equilibrium Testing

Before the grout curtain was placed, the test box was flooded by closing the drain and filling the box with water until the water level was 25-mm above the soil surface. After flooding the physical model with water, the drain was opened and the water was pumped into the physical model at a rate that kept the inflow rate equal to the outflow rate. In essence, the physical model was held at a constant head for 30 minutes before any initial testing was completed to provide adequate time for saturation. Running the initial test with no grout curtain present produced a hydraulic conductivity value of 0.0085 cm/s and a pore pressure value 3.17 kPa.

Another initial test that was conducted was a test that showed the change in pore pressure with respect to time with the presence of a simple grout curtain. The purpose of this test was to ascertain the amount of time required for pore pressures to reach equilibrium. The grout curtain consisted of two-acrylic slats, 76.2 mm-wide, inserted 25.4 mm upstream of the pore pressure transducer. Figure 4.1 shows the effects the simple grout curtain had on the pore pressure with respect to time. It also shows that approximately 20 minutes after the grout curtain was inserted 25.4 mm upstream of the pore pressure transducer, the pore pressure values began to level off and stay constant. This figure shows that pore pressure readings should be taken at least 20 minutes after the grout curtain is inserted into the Ohio River Valley sand to allow it to reach an equilibrium state.

Figure 4.1: Effect of a simple grout curtain on pore pressure with respect to time.

It is important to note that the initial pressure at time zero in Figure 4.1 is not equal to the initial pressure without the presence of a simple grout curtain. Two separate tests were conducted using two different amounts of porous media.

4.1.2 Procedures Testing With Grout Curtain and Results

Experimentation was performed to ascertain the effect of installation sequence on the performance parameters. For this series of tests, pore pressure and hydraulic conductivity were used as performance parameters. The testing consisted of five sets of tests that used three orientation schemes. Each set of tests in this test series utilized twoacrylic slats, 76.2-mm wide, inserted 25.4-mm upstream of the transducer. Each set of tests had its own grout curtain placement scheme along the proposed grout curtain line. The proposed grout curtain line within the physical model can be seen in Figure 4.2. In the figure, the numbers represent possible slat locations. Pore pressure and hydraulic conductivity values were measured during each test set.

The first orientation scheme used in this test series was to move two 76.2-mm wide acrylic slats across the length of the proposed grout curtain line. Table 4.1 shows

the various grout orientations associated with Tests 1 through 7, along with their corresponding pore pressure and hydraulic conductivity measurements.

		Right		
	Left Slat	Slat	Pore Pressure	Hydraulic Conductivity
Tests	Location	Location	(kPa)	(cm/s)
1	4	5	3.09	0.0078
2	2	3	2.79	0.0081
3	1	2	2.40	0.0074
4	3	4	3.03	0.0071
5	5	6	2.82	0.0065
6	6	7	2.51	0.0069
7	7	8	2.32	0.0067

Table 4.1: Grout curtain orientations for Tests 1 through 7 along with their corresponding hydraulic conductivity and pore pressure measurements.

During Tests 1 through 4, the two-76.2 mm wide acrylic slats started directly in the middle of the box and moved to the left. However, during Tests 1, 5, 6 and 7 the two-76.2 mm wide acrylic slats started directly in the middle of the box and moved to the right. By looking at Figure 4.3, the effects of the location of the drain can be seen. Tests 1 through 4, with the grout curtain on the left hand side, experienced higher pore pressures than Tests 1, 5, 6 and 7, with the grout curtain on the right hand side, because the flow of water had a more direct path to the drain. Plotting pore pressure versus distance from the pore pressure transducer, Tests 1 through 4 and Tests 1, 5, 6 and 7 both follow the same trend. As the two-76.2 mm wide acrylic slats get further and further away from the pore pressure transducer, the lower the pore pressure became. The assumption is that the lower the pore pressure, the more effective the grout curtain was.

Figure 4.3: Pore pressure versus distance from pore pressure transducer for Tests 1-7.

The effect of the drain can also be seen in Figure 4.4 which plots hydraulic conductivity versus distance from the pore pressure transducer.

Figure 4.4: Hydraulic conductivity versus distance from pore pressure transducer for Tests 1 through 7.

Tests 1 through 4 with the grout curtain on the left hand side, experienced higher hydraulic conductivity values than Tests 1, 5, 6 and 7 with the grout curtain on the right hand side because the flow of water had a more direct path to the drain. Other than the observed behavior previously discussed, no further trends developed with respect to hydraulic conductivity in this study.

The second orientation scheme used in this study started out with one-76.2 mm wide acrylic slat on each end of the proposed grout curtain line. The slats then preceded inwards towards the pore pressure transducer. This orientation scheme was conducted to help determine whether or not changes in sequencing had any kind of effect on pore pressure and hydraulic conductivity. Table 4.2 shows the various grout curtain orientations for Tests 1, 8, 9 and 10 along with their corresponding pore pressure and hydraulic conductivity measurements. For further clarity on this specific grout curtain orientation scheme, refer to Table 4.2 and Figure 4.2.

Table	4.2:	Grout	curtain	orientations	for	Tests	1,	8,	9	and	10	along	with	their
corres	pondi	ng hydi	raulic con	nductivity and	l por	e press	ure	me	ası	ıreme	ents.			

			Pore	
	Left Slat	Right Slat	Pressure	Hydraulic
Tests	Location	Location	(kPa)	Conductivity (cm/s)
8	1	8	2.41	0.0065
9	2	7	2.63	0.0065
10	3	6	3.10	0.0063
1	4	5	3.09	0.0078

The results obtained from this series of tests, showed that sequencing does have an effect on pore pressure and hydraulic conductivity. As the acrylic slats propagated towards the

pore pressure transducer, higher pore pressures resulted. Hydraulic conductivity stayed fairly constant as the acrylic slats preceded inward, with the exception of Test 1.

The third orientation scheme used in this study was holding one-76.2 mm-wide acrylic slat stationary in the middle next to the pore pressure transducer, while moving the other 76.2 mm wide acrylic slat outward along the proposed grout curtain line. This orientation scheme was conducted to help determine the effects on pore pressure and hydraulic conductivity with respect to which side the simulated grout curtain was placed. Table 4.3 shows the various grout curtain orientations for Tests 11-16 along with their corresponding pore pressure and hydraulic conductivity measurements.

Table 4.3: Grout curtain orientations for Tests 11 through 16 along with their corresponding hydraulic conductivity and pore pressure measurements.

		Right		
	Left Slat	Slat	Pore Pressure	Hydraulic
Tests	Location	Location	(kPa)	Conductivity (cm/s)
11	4	8	2.30	0.0064
12	4	7	2.69	0.0067
13	4	6	3.04	0.0071
14	1	5	2.39	0.0064
15	2	5	2.78	0.0067
16	3	5	3.13	0.0071

Test results associated with this test series showed that when the simple grout curtain was placed on the right hand side of box along the proposed grout curtain line, pore pressures were lower compared to when grout curtain was on the left hand side. Upon speculation it was believed that the observed pore pressure behavior was a result of the water flow path. Since the water had a more direct path to the drain when the simulated grout curtain was

positioned on the left hand side, higher pore pressures resulted as compared to when the grout curtain was positioned on the right hand side. Hydraulic conductivity stayed constant, when comparing measurements with the grout curtain on the left and right hand sides.

4.2 Development of a New Performance Parameter–Linear Replacement Ratio

As was discussed earlier in Chapter 2, it was hypothesized that an area replacement ratio could be used to quantify effectiveness. However, the use of flat acrylic slats precluded the use of areas. Therefore, a linear replacement ratio was developed. The linear replacement ratio was equal to the width of the installed slats divided by the total width of the model. Unfortunately, this relationship was inadequate because it did not take into account the various installation sequences. In addition, initial testing showed the location of the pore pressure transducer and drain influenced the results.

To evaluate the effectiveness of a grout curtain, this study utilized a linear replacement ratio (\bar{x}_2) based on a double normalization scheme. The linear replacement ratio takes into account the distance the centroids of the acrylic slats are from the pore pressure transducer and drain, respectively. This normalization scheme was conducted to understand the influence of the drain within the laboratory-scale physical model. The linear replacement ratio equation that was developed is given in Equation 9 and is graphically presented in Figure 4.5

$$\overline{x}_{2} = \frac{\left(\frac{d_{1}+d_{2}}{L_{1}+L_{2}}\right)}{\left(\frac{d_{1}+d_{2}}{D_{1}+D_{2}}\right)}$$
(9)

45

where \bar{x}_2 = double normalization value, d_1 = the distance between the centroid of the first slat and the midpoint of the pore pressure transducer, d_2 = the distance between the centroid of the second slat and the midpoint of the pore pressure transducer, L_1 = the length of the first slat, L_2 = the length of the second slat, D_1 = the distance from the centroid of the first slat to the midpoint of the drain, and D_2 = the distance from the centroid of the second slat to the midpoint of the drain.

Figure 4.5: Graphical representation of the linear replacement relationship.

Figure 4.6 presents a plot of the linear replacement ratio versus pore pressure for all tests in this study. Refer back to Table 4.1, Table, 4.2 and Table 4.3 for further clarity on grout curtain orientations for all tests in this study. It can be seen in Figure 4.6 that the data produced well-defined curves. Figure 4.6 shows as the total length of the slats got further away from the pore pressure transducer the pore pressure decreased. The lower the pore pressure, the more effective was the grout curtain.

Figure 4.6: Linear replacement ratio versus pore pressure graph with grout curtain on (A) left hand side, and (B) right hand side.

The effects of the positioning of the drain within the laboratory-scale physical seepage model can be seen as well. Comparing tests with the same sequence, but on opposite sides of the physical model show the effects the drain position has on pore pressure measurements. When the grout curtain was placed on the left hand side of the physical model, pore pressure measurements tended to be higher than when the grout curtain was placed on the right hand side. This trend was consistent for all tests completed in this study since the flow of water had a more direct path to the drain when the grout curtain was on the left hand side of the physical model. The linear replacement ratio coupled with pore pressure measurements produced trends that will help contribute to quantification of the effectiveness of a grout curtain. However, the use of flat acrylic slats to represent a grout curtain wall does not encapsulate the true geometry of a grout curtain wall. Thus, the study used polyvinyl chloride (PVC) piping to take into account area as opposed to just length.

4.3 Area Representation of Grout Curtain-Polyvinyl Chloride Pipe Testing and Results

Similar to the acrylic slats testing, pore pressure transducers were utilized and installed at a pre-determined location within the test media. However, it is important to note that three pore pressure transducers were utilized, the test media used was the Kentucky River sand and the simulated grout columns were PVC pipes. Just like the acrylic slats testing, pore pressure measurements along with volume discharge measurements were subsequently performed during the various installation sequences of the simulated grout curtain. Measurements were taken every 25 minutes after the placement of PVC piping to allow for pore pressures to reach an equilibrium state. This time interval was determined from monitoring pore pressures and times in the manner presented in the "Initial Equilibrium Testing" section. However, it is noted that the time intervals were slightly different. Testing with the Kentucky River sand required measurements to be taken at 25 minutes instead of 20 minutes. The slight difference in time interval is due to a lower hydraulic conductivity.

Twenty sets of tests were performed during this test series. The twenty sets of tests were comprised of five spacing-to-diameter ratios (S/D) at four different dry unit weights. The spacing-to-diameter ratio is the ratio of the center-to-center spacing between grout columns along the proposed grout curtain line to the diameter of grout column itself. The diameter of all grout columns was 22 mm. The five different S/D ratios used in this study include 1, 1.18, 1.45, 1.62 and 2.17. These S/D ratios were selected to accommodate for equal spacing between grout columns. Not only did these S/D ratios accommodate for equal spacing, but they also allowed for the two grout columns at the ends of the proposed grout curtain line to touch the sides of the test box. The four dry

unit weights that were tested were 12.56, 13.03, 13.35, and 13.82 kN/m³. The dry unit weights were selected to fit within the maximum and minimum relative unit weights tabulated earlier in Table 3.1. But before PVC testing was performed, it was essential for this research that a new performance parameter utilizing areas be developed. By using the development of a new performance parameter combined with measured Lugeon values, it was believed that a grout curtain's effectiveness could be quantified prior to installation.

4.4 Development of a New Performance Parameter – Area Replacement Index

As mentioned earlier in Chapter 2, it was believed that an area replacement ratio similar to the one presented by Priebe (1991) and Priebe (1995) for ground improvement could be utilized to help in the quantification of the effectiveness of a grout curtain. Through experimentation with various proposed area replacement approaches, a new performance parameter was developed, which will be referenced throughout the remainder of this thesis as the area replacement index (λ).

To evaluate the effectiveness of a grout curtain, this study utilized a area replacement index value based on a double normalization scheme. The double normalization scheme was developed to take into account the amount of grout curtain placed within the area of improved ground and geometric configuration. The development of the area replacement index was based on four separate geometric configurations which are illustrated in Figure 4.7. Pore pressure measurements were subsequently taken as each additional grout column was installed following one of the geometric configurations.

Figure 4.7: Geometric configurations used in the development of the area replacement index. (A) Tangent Planer, (B) Tangent Circular, (C) Tangent Primary-Secondary and (D) Discontinuous Primary-Secondary.

Seen in Figure 4.7, the tangent planer configuration is a rectangular trench section similar to a slurry wall panel. Testing was completed using flat acrylic slats, similar to the ones discussed earlier in this chapter. Tangent circular configuration is composed of a single row of circular grout columns placed tangent to one another. Both, tangent primary-secondary and discontinuous primary-secondary configurations are composed of two rows of circular grout columns. The only difference is the second row of grout columns for the discontinuous primary-secondary configuration is offset by a distance of half the diameter of a grout column. It is important to note that configurations identified

in Figure 4.7 as B, C and D utilized the same 2.2-cm diameter PVC piping for grout columns.

The area replacement index utilizes a double normalization scheme. The first normalization scheme utilized is illustrated by the following:

$$\overline{A}_{G} = \left(\frac{\sum_{l=1}^{i} A_{GC}}{A_{TOTAL}}\right)$$
(10)

where \overline{A}_G = the normalized grouted area, A_{GC} = summation of the area of the grout columns, i = the number of grout columns installed at a specific time, A_{TOTAL} = total area of ground to be improved given the width of grout column by the total length of the grout region. For further clarification, Figure 4.8 shows a generalized graphical representation of the proposed grout curtain region and components.

Figure 4.8: Components of grout region where $A_{TOTAL} = (b_{TOT})(L_{TOT})$, $b_{TOT} =$ width of the grout region and $L_{TOT} =$ length of the grout region.

Normalizing A_{GC} by A_{TOTAL} , allows for the evaluation of the effects of the area with respect to the area of improved ground. The relationship between normalized grouted area versus pore pressure for the four geometric configurations are shown in Figure 4.9.

Figure 4.9: Relationship between normalized grouted area versus pore pressure for various geometric configurations.

As seen in Figure 4.9, in addition to varying with the normalized grouted area, pore pressure also varied consistently with respect to the geometric configuration. Thus, further normalization was done to take into account geometric configuration. The second normalization scheme takes into account geometric configuration and is given in the following form:

$$\lambda = \left[\frac{\left(\sum_{1}^{i} A_{GC} \middle/ A_{TOTAL}\right)}{\left(A_{GC(MAX)} \middle/ A_{TOTAL}\right)}\right]$$
(11)

where λ = area replacement index, $A_{GC(MAX)}$ = the maximum area of the grout columns that will fit within the grouted region at a specific S/D ratio.

Normalizing Equation 11 by $A_{GC(MAX)}/A_{TOTAL}$ takes into consideration geometric configuration. For example, if the geometric cross-section of the grout column is anything other than circular, this ratio will take this into consideration. Figure 4.10 shows the relationship between area replacement index versus pore pressure grouped by geometric configuration.

Figure 4.10: Relationship between area replacement index versus pore pressure grouped by geometric configuration.

As seen in Figure 4.10, the curves presented in Figure 4.9, collapsed to one curve after further normalization. At a constant area replacement index, pore pressure measurements at different geometric configurations seem to be equal. This is an indication that the area replacement index takes into consideration the amount of grout curtain placed within the area of improved ground and the geometric configuration. Thus,

to simply testing procedures, all further testing was completed using the tangent circular geometric configuration only.

4.5 Nested Pore Pressure Transducers

Nested pore pressure testing with PVC pipes was similar to the acrylic slats testing. However, it is important to note that the test media used was the Kentucky River sand, the simulated grout columns were PVC pipes with a diameter of 22 mm, and three pore pressure transducers were utilized and positioned differently than when performing the acrylic slats testing. The pore pressure transducers were situated in a manner within the porous media, where all three transducers were within the same column at various known pressures, hence the word nested. The three pore pressure transducers were nested directly in the center of the box. Gauge 12, Gauge 13 and Gauge 14 were placed in a vertical column at known reference pressures of 2.29 kPa, 3.62 kPa and 5.17 kPa, respectively. Known reference pressures were determined by multiplying the unit weight of water by the height. This series of tests was performed to determine a pore pressure gradient with respect to depth. Having this data would help illustrate the effects on pore pressure with respect to depth at different S/D ratios and dry unit weights.

Pore pressure and volume discharge measurements were taken, as each additional PVC pipe was placed along the proposed grout curtain line within the test box. Upon completion of the initial test, three-22 mm diameter PVC pipes were placed into the center of the test box along the proposed grout curtain line at the desired S/D ratios. Pore pressure and volume discharge measurements were again taken 25 minutes after the placement of PVC pipes. With these two measurements, corresponding Lugeon values

were calculated by utilizing Equation 1 presented in Chapter 2. This process was repeated adding one additional PVC pipe at the same desired S/D ratio, while alternating sides of the proposed grout curtain line until the grout curtain reached the sides of the test box. The entire process was repeated for all tests. Table 4.4 shows raw data corresponding to the test where the S/D ratio = 1 and a dry unit weight = 12.56 kN/m^3 . For additional test data corresponding to nested pore pressure transducer testing see Appendix C.

Test	# of PVC Pipes	Pore Pressure- Gauge 12(kPa) Top	Pore Pressure- Gauge 13(kPa) Middle	Pore Pressure- Gauge 14(kPa) Bottom	Discharge Volume (mL)
Run 0	0	2.352	3.690	5.159	5520
Run 1	3	2.101	3.390	5.098	5423
Run2	4	2.167	3.515	5.075	5215
Run 3	5	1.937	3.287	4.952	5193
Run 4	6	1.841	3.127	4.683	4956
Run 5	7	1.840	3.222	4.652	4720
Run 6	8	1.831	3.262	4.503	4631
Run 7	9	1.512	3.087	4.213	4321
Run 8	10	1.343	3.058	4.243	3812
Run 9	11	0.905	2.335	3.975	3561
Run 10	12	0.425	1.857	3.721	3389
Run 11	13	Dry	1.471	3.521	3251
Run 12	14	Dry	1.052	3.275	3000
Run 13	15	Dry	0.845	2.875	2651
Run 14	16	Dry	0.642	2.683	2563
Run 15	17	Dry	0.411	2.596	2312
Run 16	18	Dry	0.213	2.318	2015
Run 17	19	Dry	Dry	2.136	1875
Run 18	20	Dry	Dry	2.006	1623
Run 19	21	Dry	Dry	1.945	1452
Run 20	22	Dry	Dry	1.842	1261
Run 21	23	Dry	Dry	1.812	1205
Run 22	24	Dry	Dry	1.625	1195
Run 23	25	Dry	Dry	1.425	1182
Run 24	26	Dry	Dry	1.358	1099
Run 25	27	Dry	Dry	1.309	1082

Table 4.4: Raw data from corresponding to S/D=1 and dry unit weight= 12.56 kN/m³.

It is observed that Gauge's 12 and 13 were unable to record pore pressures for all tests. Gauge 12 and Gauge 13 were able to record data until Run 10 and Run 16, respectively. Two of the pore pressure transducers read "Dry" because the pore pressure transducers were located above the ground water table. This same problem was encountered for several tests at different S/D ratios and dry unit weights. Aware that this would present a problem, it was determined that pore pressure transducers be placed at the bottom of the test box as the research moved forward. Placing the pore pressure transducers at the bottom of the box prevented them from reading "Dry".

4.6 Pore Pressure Transducers Located at Bottom of Test Box

Due to pore pressure transducers drying out, it was determined that the three pore pressure transducers be placed at the bottom of the test box in a line parallel to the proposed grout curtain seen in Figure 3.2. They were placed 25.4-mm downstream of the proposed grout curtain, equal distant from one another. The test procedure outlined in the "Nested Pore Pressure Transducers" section was followed. The only difference was the placement of the three pore pressure transducers. Gauge 12, 13, and 14 were placed in the center, left and right hand sides of the box looking downstream, respectively. The pore pressure transducers were placed in such a fashion in hopes to see if there were any influences from the drain. However, it was determined through plotting pore pressure for all three transducers versus area replacement index, the drain had little influence on the readings of the pore pressure transducers. Figure 4.11 illustrates the influence of the drain from one test set (S/D =1 and dry unit weight = 12.56 kN/m^3).

56

Figure 4.11: Influence of the drain on the three pore pressure transducers.

As observed in Figure 4.11, there was no significant variance in the pore pressure readings between the three transducers. Since this was consistent across all 20 tests, it was determined that an average pore pressure from the three transducers be used for further analysis.

Once test data was collected for all 20 test sets (five S/D ratios at four various unit weights), the data was analyzed for the intent of developing a quantifiable relationship between the area replacement index, Lugeon value, S/D ratio, and dry unit weight. To do so, various plots were developed to help in the understanding. The area replacement index was plotted versus several combinations and variations of parameters. It was determined through experimentation that combinations of average pore pressure, Lugeon values, and flow loss would provide the most correlation.

Flow loss is a typical parameter measured when calculating Lugeon values and can be seen in Equation 12:

$$Flow \ Loss = \frac{q}{L} \tag{12}$$

where q = flow rate out of the test box = Q/t and Q = volume of discharge, t = totaltime interval with which volume of discharge was collected and L = test interval length of the representative test sample.

In order to scale the results from the test box, average pore pressure, flow loss and Lugeon values were normalized as:

Normalized Average Pore
$$\Pr essure = \frac{P}{P_0}$$
 (13)

Normalized Flow Loss =
$$\left\lfloor \frac{\left(\frac{q}{L}\right)}{\left(\frac{q_0}{L_0}\right)} \right\rfloor$$
(14)

Normalized Lugeon Value =
$$\frac{LV}{LV_0}$$
 (15)

where P_0 , q_0/L_0 , LV_0 = initial test measurements with no PVC pipes.

The normalization factors utilized in this research where from the initial test measurements described earlier in this chapter, when no PVC pipes were present, just the test media itself. Plots using these parameters are shown throughout the remainder of this chapter.

Figure 4.12 shows the relationship between area replacement index and normalized average pore pressure and shows how that relationship varies as the S/D ratio varies.

Figure 4.12: Area replacement index versus normalized average pore pressure, grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m³, (B) 13.03 kN/m³, (C) 13.35 kN/m³ and (D) 13.82 kN/m³.

For all 20 tests, as the area replacement index increases, the normalized average pore pressure decreases. Furthermore, at a constant area replacement index, the S/D ratio has a large effect on the normalized average pore pressure. For a given area replacement index, the relationship between the change in normalized average pore pressure and the change in S/D ratio do not appear to be proportional. However, there does seem to be some correlation between the shapes of the curves. All tests performed, display a similarly shaped curve.

Figure 4.13 illustrates the relationship between area replacement index and normalized q/L and shows how that relationship varies as the S/D ratio varies.

Figure 4.13: Area replacement index versus normalized q/L, grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m³, (B) 13.03 kN/m³, (C) 13.35 kN/m³ and (D) 13.82 kN/m³.

At a constant area replacement index, the S/D ratio has an effect on normalized q/L seen in Figure 4.13. Also, at a constant S/D ratio, as the area replacement index increases, the normalized q/L decreases. Looking at Figure 4.12 and Figure 4.13, the relationship between area replacement index and normalized q/L and the relationship between area replacement index and normalized average pore pressures are quite similar. The behavior of these curves presented seem to be consistent crossed all S/D ratios and dry unit weights.

The curves presented in Figure 4.12 and Figure 4.13, were curve fitted using a fitting program, Table Curve (SYSTAT, Chicago, IL). The curves presented in these figures, were curve fit to identify the general equation form that describes the behavior of these curves. Figure 4.14 illustrates fitted curves showing the relationship between area replacement index and normalized average pore pressure, and area replacement index versus normalized q/L at a dry unit weight of 12.56 kN/m³. It should be noted that similar behavior was witnessed across all dry unit weights. However, for simplicity only results for a dry unit weight of 12.56 kN/m³ were presented.

Figure 4.14: (A) Fitted curves showing the relationship between area replacement index versus normalized average pore pressure, grouped by S/D ratios for a dry unit weight of 12.56 kN/m³. (B) Fitted curves showing the relationship between area replacement index versus normalized q/L, grouped by S/D ratios for a dry unit weight of 12.56 kN/m³.

The general equation describing the behavior of the curves presented in Figure 4.14 were identified as a sigmoid. The specific equation that was identified having the highest R^2 values across all S/D ratios and dry unit weights can be seen in following equation:

$$y = a + \left(\frac{b}{1 + \exp\left(-\left(\frac{x-c}{d}\right)\right)}\right)$$
(16)

where y = normalized average pore pressure or normalized q/L, x = area replacement index, and a, b, c, d = constants.

Constants a, b, c and d were unable to be identified as specific properties of the curve through further analysis. However, for completeness constants a, b, c, d and R^2 values corresponding to the curve-fit plots of area replacement index versus normalized average pore pressure, and area replacement index versus normalized q/L are tabulated in Table 4.5. The constants and R^2 values are tabulated for all four dry unit weights.

	Dry Unit Weights			,		d	D ²
	(kN/m^3)	S/D Ratio	а	b	c	d	R²
		1	0.17	0.92	0.48	-0.19	1.00
		1.18	0.14	0.93	0.61	-0.22	0.99
	12.56	1.45	-1.37	2.55	1.36	-0.48	0.99
		1.62	0.53	0.52	0.63	-0.20	0.99
		2.17	0.54	0.48	0.91	-0.23	0.99
		1	0.10	1.10	0.43	-0.26	1.00
		1.18	0.07	1.06	0.59	-0.27	0.99
	13.03	1.45	0.07	1.01	0.77	-0.28	1.00
		1.62	0.47	0.55	0.65	-0.17	0.99
Area Replacement Index vs		2.17	0.48	0.54	0.84	-0.20	0.99
Normalized Average Pore		1	0.14	1.04	0.40	-0.23	1.00
Pressure		1.18	0.17	0.90	0.53	-0.20	1.00
	13.35	1.45	-0.12	1.28	0.82	-0.37	0.99
		1.62	0.49	0.55	0.59	-0.18	0.99
		2.17	0.44	0.58	0.87	-0.21	0.99
		1	0.14	1.04	0.40	-0.22	1.00
	13.82	1.18	0.19	0.92	0.49	-0.21	0.99
		1.45	0.25	0.83	0.58	-0.22	0.99
		1.62	0.48	0.54	0.56	-0.16	1.00
		2.17	0.62	0.39	0.70	-0.15	1.00
		1	0.15	0.94	0.44	-0.17	1.00
		1.18	0.14	0.96	0.54	-0.21	0.99
	12.56	1.45	0.00	1.13	0.73	-0.30	0.99
		1.62	0.48	0.57	0.61	-0.20	0.99
		2.17	0.55	0.47	0.82	-0.23	0.99
		1	0.08	1.15	0.38	-0.25	1.00
		1.18	0.10	1.00	0.53	-0.23	1.00
	13.03	1.45	0.09	1.00	0.69	-0.26	0.99
		1.62	0.42	0.60	0.63	-0.17	0.99
Area Replacement Index vs.		2.17	0.51	0.51	0.76	-0.18	0.99
Normalized q/L		1	0.13	1.10	0.33	-0.21	0.99
		1.18	0.17	0.93	0.47	-0.18	1.00
	13.35	1.45	0.11	1.01	0.61	-0.28	1.00
	15.55	1.62	0.37	0.70	0.57	-0.23	1.00
		2.17	0.51	0.51	0.75	-0.18	0.99
		1	0.09	1.14	0.35	-0.21	0.99
		1.18	0.12	1.04	0.44	-0.23	0.99
	13.82	1.45	0.18	0.92	0.54	-0.22	0.99
		1.62	0.38	0.65	0.55	-0.17	1.00
		2.17	0.53	0.48	0.69	-0.16	1.00

Table 4.5: Sigmoidal curve fitting constants from Table Curve.

Figure 4.15 shows the relationship between normalized average pore pressure and normalized q/L. The normalized average pore pressure and normalized q/L values that

are were shown seem to be proportional. Normalized average pore pressure was plotted versus normalized q/L to determine whether or not the two parameters were indeed proportional. This proportionality seems to occur over all five S/D ratios and four unit weights.

Figure 4.15: Linear relationship between normalized average pore pressure and normalized q/L grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m³, (B) 13.03 kN/m³, (C) 13.35 kN/m³ and (D) 13.82 kN/m³.

Looking at Figure 4.15, the proportionality between normalized average pore pressure and normalized q/L seems to occur over all five S/D ratios and four dry unit weights. The R^2 values presented in Figure 4.15, suggest that the relationship between normalized pore pressure and normalized q/L is highly linear for all S/D ratios and dry unit weights. For all five S/D ratios at all four dry unit weights, R^2 values were greater than 0.99. As the

normalized pore pressure decreases, the normalized q/L decreases. According to Quinones-Rozo (2010) research, a linear relationship between pore pressure and q/L describes laminar flow. Laminar flow occurs when fluid is moving at low velocity. When fluids move at low velocities, no lateral mixing takes place. Also, Quinones-Rozo (2010) research found out that Lugeon values are approximately equal regardless of pore pressure during laminar flow. Figure 4.16 was developed to verify that the flow within the laboratory-scale physical seepage model was indeed laminar.

Figure 4.16: Relationship between average pore pressure and q/L grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m³, (B) 13.03 kN/m³, (C) 13.35 kN/m³ and (D) 13.82 kN/m^3 .

As seen in Figure 4.16, most data points across all S/D ratios and dry unit weights fell within the boundaries corresponding to a Lugeon value of 80 and 100. This figure illustrates that Lugeon values seen within the laboratory-scale psychical seepage model were fairly constant at various average pore pressures. This behavior is consistent with the characterization of laminar flow described in Quinones-Rozo (2010) research.

Now that the flow behavior within the test box has been characterized, normalized pore pressure and normalized q/L were plotted versus normalized Lugeon values. As stated earlier in this thesis, Lugeon values are used in this study to help quantify the effectiveness of a grout curtain. Utilizing Lugeon values in this study allows implementation of the proposed efficiency parameters using current field techniques. Figure 4.17 illustrates the relationship between normalized average pore pressure versus normalized average Lugeon value grouped by S/D ratio at various dry unit weights.

Figure 4.17: Relationship between normalized average pore pressure and normalized average Lugeon values grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m³,
(B) 13.03 kN/m³, (C) 13.35 kN/m³ and (D) 13.82 kN/m³.

As seen in Figure 4.17, it appears that there is a linear relationship between normalized average pore pressure and normalized average Lugeon value. However, the figure does

show some variability with respect to normalized Lugeon values. The normalized Lugeon values for all S/D ratios at various different dry unit weights do have some scatter. The scatter in these plots deal with the pressure range that was observed in the box. The maximum pore pressure that was observed in the box was 5.30 kPa. Looking back at the equation that was utilized to calculate Lugeon values for this study presented in Chapter 2, the equation uses a reference pressure of 1 MPa. Since, the test box is operating at such small pressures compared to the reference pressure; small changes in pore pressure can result in much larger changes in Lugeon values. Even though test data appears to scatter a little, a consistent trend has developed for all S/D ratios at all dry unit weights. As the normalized average pore pressure decreases, so does the normalized average Lugeon values. Linear curve fitting for the individual test data shown in Figure 4.17, produced high R^2 values. R^2 values for all S/D ratios at all dry unit weights were greater than 0.82 and can be seen in Table 4.6. These high R^2 values imply that a linear relationship between normalized average pore pressure and normalized average Lugeon value exists. Further analysis shows that at constant unit weight, as the S/D ratio increases, the slope of the linear best fit line decreases.

Dry Unit Weight (kN/m ³)	S/D Ratio	Slope	Y-Intercept	R^2
	1	0.26	0.73	0.92
12.56	1.18	0.22	0.78	0.92
	1.45	0.21	0.78	0.84
	1.62	0.19	0.81	0.96
	2.17	0.18	0.81	0.82
	1	0.26	0.74	0.97
13.03	1.18	0.24	0.76	0.87
	1.45	0.25	0.75	0.95
	1.62	0.21	0.79	0.92
	2.17	0.15	0.84	0.88
	1	0.26	0.79	0.90
	1.18	0.25	0.74	0.90
13.35	1.45	0.25	0.73	0.85
	1.62	0.21	0.76	0.84
	2.17	0.19	0.80	0.83
13.82	1	0.34	0.68	0.89
	1.18	0.33	0.67	0.93
	1.45	0.31	0.69	0.91
	1.62	0.30	0.69	0.96
	2.17	0.29	0.70	0.89

Table 4.6: Unit weight, S/D ratio, slope, Y-intercept and R^2 values for linear best fit lines of normalized average pore pressure versus normalized average Lugeon value plots.

A similar relationship was developed between normalized q/L and normalized average Lugeon value. Looking back at an earlier relationship developed between normalized average pore pressures versus normalized q/L seen in Figure 4.15, it appears that the relationship is highly linear. Knowing this relationship, a plot comparing normalized q/L versus normalized average Lugeon value should produce a plot that has a similar relationship to the normalized average pore pressure versus normalized average Lugeon value plot seen in Figure 4.17. Figure 4.18 shows the relationship between

normalized q/L versus normalized average Lugeon value grouped by S/D ratio at various dry unit weights.

Figure 4.18: Relationship between normalized q/L and normalized average Lugeon values grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m³, (B) 13.03 kN/m³, (C) 13.35 kN/m³ and (D) 13.82 kN/m³.

As seen in Figure 4.18, a linear relationship between normalized q/L and normalized average Lugeon value developed. The behavior of this relationship was quite similar to the relationship illustrated in Figure 4.17, as expected. As normalized q/L decreases, the normalized average Lugeon value decreases. This trend was consistent across all S/D ratios and dry unit weights. Linear curve fitting produced best fit lines with high R^2 values which can be seen in Table 3.10. All R^2 values were greater than 0.87.

Dry Unit Weight (kN/m ³)	S/D Ratio	Slope	Y-Intercept	R^2
	1	0.25	0.75	0.94
	1.18	0.21	0.79	0.95
12.56	1.45	0.20	0.79	0.89
	1.62	0.17	0.83	0.97
	2.17	0.17	0.83	0.87
	1	0.25	0.76	0.97
13.03	1.18	0.23	0.77	0.91
	1.45	0.23	0.78	0.96
	1.62	0.19	0.81	0.94
	2.17	0.14	0.86	0.91
	1	0.25	0.75	0.94
	1.18	0.25	0.76	0.94
13.35	1.45	0.23	0.75	0.90
	1.62	0.19	0.78	0.89
	2.17	0.18	0.82	0.88
13.82	1	0.32	0.70	0.89
	1.18	0.28	0.72	0.90
	1.45	0.28	0.72	0.93
	1.62	0.28	0.72	0.95
	2.17	0.25	0.74	0.97

Table 4.7: Unit weight, S/D ratio, slope, Y-intercept and R^2 values for linear best fit lines of normalized q/L versus normalized average Lugeon value plots.

Plotting normalized average pore pressure and normalized q/L versus area replacement index and normalized average Lugeon value produced two distinct shapes. Normalized average pore pressure and normalized q/L plotted against area replacement index established non-linear sigmoidal shaped curves. While normalized average pore pressure and normalized average Lugeon value produced linear relationships.

Trends and relationships between normalized average pore pressure, normalized q/L, area replacement index and normalized average Lugeon values have been observed. To aid in the quantification in the effectiveness of a grout curtain, area replacement index was plotted versus normalized average Lugeon value for all S/D ratios at all dry unit weights. Figure 4.19 illustrates this relationship. Linear best fit lines forced through a normalized average Lugeon value of one are also seen in Figure 4.19. Equations for the linear best fit lines along with their corresponding R² values are tabulated in Table 4.8. Linear best fit lines were forced through a Lugeon value of one to allow for proper scaling and comparison to various case history data which will be discussed later.

Figure 4.19: Relationship between area replacement index and normalized average Lugeon values grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m³, (B) 13.03 kN/m³, (C) 13.35 kN/m³ and (D) 13.82 kN/m³.

Dry Unit Weight (kN/m ³)	S/D Ratio	Slope	Y-Intercept	R ²
	1	-0.21	1.00	0.86
	1.18	-0.15	1.00	0.87
12.56	1.45	-0.13	1.00	0.85
	1.62	-0.07	1.00	0.86
	2.17	-0.05	1.00	0.81
	1	-0.21	1.00	0.96
13.03	1.18	-0.17	1.00	0.84
	1.45	-0.13	1.00	0.82
	1.62	-0.09	1.00	0.82
	2.17	-0.05	1.00	0.78
	1	-0.23	1.00	0.86
	1.18	-0.18	1.00	0.83
13.35	1.45	-0.17	1.00	0.90
	1.62	-0.13	1.00	0.92
	2.17	-0.06	1.00	0.75
13.82	1	-0.27	1.00	0.90
	1.18	-0.23	1.00	0.91
	1.45	-0.19	1.00	0.86
	1.62	-0.16	1.00	0.89
	2.17	-0.10	1.00	0.88

Table 4.8: Unit weight, S/D ratio, slope, Y-intercept and R^2 values for linear best fit lines of area replacement index versus normalized average Lugeon value plots.

 R^2 values for all linear best fit lines were greater than 0.81, with the exception of two tests, S/D = 2.17 at a dry unit weight of 13.03 kN/m³ and S/D = 2.17 at a dry unit weight of 13.35 kN/m³. High R^2 values imply that a linear correlation between area replacement index and normalized average pore pressure as a function of S/D ratio exists. At this point, at a given S/D ratio, the relationship between area replacement index and normalized average Lugeon value can be described as shown in Equation 17.

$$LV_n = m_1(ARI) + 1 \tag{17}$$

where $LV_n =$ normalized average Lugeon value, $m_1 =$ slope of linear best fit line from the area replacement index versus normalized average Lugeon value plot and ARI = area replacement index.

Looking at the slopes of the linear best fit lines in Figure 4.19, at a constant S/D ratio, it appears that the slopes increase, as dry unit weight increases. Upon speculation, it is believed that as the dry unit weight increased, the void space between soil particles decreased resulting in less volume discharge, hence a decreased Lugeon value. This relationship is evident for all S/D ratios. Plotting S/D ratio versus m_1 as a function of dry unit weight shows another linear correlation seen in Figure 4.20.

Figure 4.20: S/D ratio versus m₁, grouped by dry unit weight.

As seen in Figure 4.20, R_2 values for all 4 dry unit weights showed high linear correlation. Also, the slopes of the S/D ratio versus m_1 as a function of dry unit weight

were approximately equal. Since the slopes of the best fit lines were approximately equal, an average slope value was obtained. The average slope obtained from the S/D ratio versus m_1 plot will be referred to as m_{2avg} which is equal to 0.1419. Equation 18 shows the linear relationship between S/D ratio versus m_1 as a function of dry unit weight.

$$m_1 = m_{2avg} \left(\frac{S}{D}\right) + b_2 \tag{18}$$

where S/D = spacing-to-diameter ratio and b_2 = y-intercept as a function of dry density. Now, substitute Equation 18 into Equation 17 to get Equation 19 which takes into account S/D ratio and area replacement index.

$$LV_{n} = \left(m_{2avg}\left(\frac{S}{D}\right) + b_{2}\right)ARI + 1$$
(19)

The next step to this analysis was plotting dry unit weight versus b_2 . This relationship can be seen in Figure 4.21.

Figure 4.21: Dry unit weight versus b₂.

Once again, a highly linear correlation between dry unit weight and b_2 resulted. The equation for the best fit line through the test data is shown in Figure 4.21, which displays a relationship where dry unit weight increases as b_2 decreases. The slope and y-intercept presented in Figure 4.21 were assumed to be material constants of the test media used in this research and will be referred to as m_3 and b_3 , respectively. For this research $m_3 = -0.0632$ and $b_3 = 0.4732$. However, further research should be focused on determining m_3 and b_3 material constants for various materials. Equation 20 shows the linear relationship between dry unit weight and b_2 .

$$b_2 = m_3 (\gamma_{drv}) + b_3 \tag{20}$$

where m_3 = material constant, b_3 = material constant and γ_{dry} =dry unit weight.

At this point substitute Equation 20 into Equation 19 to get Equation 21 which gives the final relationship that calculates a normalized average Lugeon value.

$$LV_n = \left(m_{2avg}\left(\frac{S}{D}\right) + m_3\left(\gamma_{dry}\right) + b_3\right)ARI + 1$$
(21)

where LV_n = normalized average Lugeon value, ARI = area replacement index, m₃ = material constant = -0.0632, b₃ = material constant = 0.4732, m_{2avg} = 0.1419, S/D = spacing-to-diameter ratio and γ_{dry} = dry unit weight.

Equation 21 is a function of S/D ratio, dry unit weight and area replacement index. This relationship quantifies the effectiveness of a grout curtain as a function of three parameters which include S/D ratio, dry unit weight and area replacement index.

4.7 Summary

It is possible to quantifiably predict the effectiveness of a grout curtain using a physical model knowing a few properties of the underlying soil material and grout curtain. Several trends and relationships developed when comparing normalized average pore pressure, normalized q/L, area replacement index and normalized average Lugeon values to one another at various S/D ratios and dry unit weights. These relationships along with further analysis, assisted in the creation of a new mathematical equation that helps predict the effectiveness of a grout curtain in a physical model. However, this new relationship has yet to be proven accurate using data from real life structures. To show that this relationship can be scaled up to real life structures, case history data needed to be obtained to assess the validity of this proposed relationship.

Chapter 5: Relationship Verification

To verify the accuracy of the newly developed relationship, case history data was collected and analyzed. The use of actual field data from different case history studies will further validate the relationship. Using case history data presented in Chapter 2 will help demonstrate that it is possible to predict the effectiveness of a grout curtain using additional data that was not used in the creation of this quantifiable relationship.

All four case history studies that were analyzed to assess the applicability of the proposed relationship (Equation 21) are dam structures located in South Korea. The specific names of the dams were not identified in the Hong et al. (2003) research, but rather identified as Site 1, Site 2, Site 3 and Site 4. Site 1, Site 3 and Site 4 are all concrete-faced rock fill dams while Site 2 is a gravity concrete dam. Metamorphic and sedimentary rock formations underlie all four dam structures. Table 2.1 presented in Chapter 2 provided pertinent information about the case history dams. This table is presented again here as Table 5.1 for continuity.

Table 5.1: Site conditions and grouting properties of four case history studies (Hong et al.2003).

	Site 1	Site 2	Site 3	Site 4
Type of Dam	Concrete Face	Gravity Concrete	Concrete Face	Concrete Face
	Rock Fill Dam	Dam	Rock Fill Dam	Rock Fill Dam
Type of Rock	Metamorphic	Sedimentary	Sedimentary	Sedimentary
Number of Holes	231	35	28	41
Depth of Holes (m)	40	20	20	40
Grout Spacing	1 column with 1.5 m spaced holes	2 columns at 3.0 m zigzag interval; 3.0 m spaced holes	1 column with 1.5 m spaced holes	2 columns at 3.0 m zigzag interval; 3.0 m spaced holes
Span of Grout Curtain (m)	347	105	42	123
Average Lugeon Value Before Grouting	3	3.9	11	2.37
Average Lugeon Value After Grouting	1	1.9	3	1
Injection Pressure (Mpa)	0.39-2.45	0.15-0.59	0.15-0.59	0.29-2.45
Assumed Grout Column Diameter (m)	1.016	1.016	1.016	1.016

Four separate parameters for each site had to be identified, which included normalized average Lugeon value, S/D ratio, area replacement index and dry unit weight. S/D ratios and area replacement index values were calculated for all four sites based on the geometry of the individual grout curtains which was presented in Chapter 2. The diameters of the grout columns include allowances for horizontal spread of the grout material. Horizontal spread is the maximum distance the grout material can penetrate the soil media. Typical grout curtain designs account for 1.016 m of horizontal spread (Hacker, 2014). Thus, the diameters of the grout columns for the case histories were assumed to be 1.016 m. Normalized average Lugeon values were calculated by dividing the average Lugeon value after grouting by the average Lugeon value before grouting. Dry unit weights of the underlying material were not presented. However, underlying rock types were given. With this knowledge, average dry unit weights for these underlying rock formations were assumed based on research done by Magner (1963) and

Akeinyemi et al. (2012). Metamorphic and sedimentary rocks were assumed to have unit weights of 23.56 kN/m³ and 22.77 kN/m³, respectively. These unit weights are well outside the unit weights tested in this research. To accommodate the assumed unit weights of the metamorphic and sedimentary rock formations, predicted curves were developed holding the S/D ratio and ARI constant in Equation 21. Predicted curves matching the unit weights of the underlying rock material allowed for easy comparison. Figure 5.1 illustrates the case history data plotted against predicted values.

Figure 5.1: Case history data versus predicted values plotted at dry unit weights of (A) 22.77 kN/m³ and (B) 23.56 kN/m³.

As seen in Figure 5.1, all case history studies have S/D ratios between 1 and 3. Since the underlying rock material seen at Site 2, Site 3 and Site 4 were similar; these sites were plotted together, seen in Figure 5.1A. Site 1 composed of metamorphic rock, was plotted by itself seen in Figure 5.1B. To truly assess the applicability of the proposed relationship, predicted normalized average Lugeon values were plotted versus actual normalized average Lugeon values for all four case histories. Predicted values are compared to actual values in Figure 5.2.

Figure 5.2: Relationship between predicted normalized average Lugeon value versus actual normalized average Lugeon values.

Figure 5.2 illustrates the applicability of the relationship presented in Equation 21 using data from four separate case histories. As is seen in the figure, all four points plot near the line of unity. The absolute percent error was calculated for all four case histories using Equation 22.

Absolute % Error =
$$\left| \frac{Actual \ Value - Expected \ Value}{Actual \ Value} \right| \times 100$$
 (22)

Table 5.2, tabulates absolute percent error for each of the 4 case histories.

	Predicted Normalized	Actual Normalized	Absolute percent
	average Lugeon value	average Lugeon value	error (%)
Site 1	0.27	0.30	8.40
Site 2	0.48	0.49	1.42
Site 3	0.32	0.27	17.07
Site 4	0.47	0.42	11.20

Table 5.2: Calculated absolute percent errors for all case history studies.

Evaluating the absolute percent error values tabulated in Table 5.2, it is evident that the relationship presented in Equation 21 is reliable when predicting normalized average Lugeon values. Site 3 shows the highest absolute percent error of 17.1 percent. Site 2 on the other hand shows the lowest absolute percent error of 1.42 percent. Site 1 and Site 4 have absolute percent error values that fall in between the absolute percent errors of Site 2 and Site 3.

Normalized average Lugeon values can be predicted as a function of three parameters, S/D ratio, dry unit weight and area replacement index to assess the effectiveness of a grout curtain. Case history data further validates that the relationship that developed while testing in a box, can be scaled up to real life structures. Being able to reliably predict Lugeon values will prove very beneficial when designing grout curtain structures in the future.

Chapter 6: Summary and Conclusions

This thesis presented the results of a laboratory study that quantified the effectiveness of a grout curtain using a laboratory-scale physical seepage model. This study investigated changes in pore pressures and discharge volumes to determine corresponding Lugeon values at various unit weights and spacings. The development of a new performance parameter similar to the area replacement ratio used in ground improvement methods was utilized to help develop a quantifiable relationship. This research discovered a linear relationship that takes into account soil unit weight, grout curtain spacing and a new performance parameter that can be used to help predict the effectiveness of a grout curtain. Verification of this relationship was done by using various case history studies.

The information presented in Chapter 2, discussed the current methodologies in which grout curtains are assessed. However, it is pointed out that most of the prior research was predominately based on qualitative means such as prior experience and rules of thumb rather than quantitative means. Quantifying the effectiveness of a grout curtain prior to installation would prove very beneficial. It would help engineers minimize factors such as time, cost and labor.

Chapter 3 presented the development of a physical model. This physical model was used to help determine and illustrate various geotechnical trends that exist within the test media with various grout curtain configurations. Measurements of pore pressure and discharge volume for various S/D ratios at different dry unit weights were taken. These measurements were subsequently used to calculate Lugeon values, which were the primary basis for quantification.

82

It was presented in Chapter 2, that an area replacement parameter similar to Priebes (1991) and Priebes (1995) area replacement ratio for ground improvement, could be used as a means to quantify the effectiveness of a grout curtain. Therefore, a new performance parameter known as the area replacement index was developed and presented in Chapter 4.

The main goal of this research was to generate a new quantifiable relationship to predict the effectiveness of a grout curtain based on Lugeon values and area replacement index values. This research illustrated a linear relationship that is a function of three parameters S/D ratio, dry unit weight and area replacement index. Knowing these three parameters allows for the prediction of the effectiveness of a grout curtain.

Case history data was obtained and analyzed for four various sites to assess the accuracy of the newly developed quantifiable relationship. Plotting actual data from four various case histories versus predicted data utilizing the newly developed quantifiable relationship exemplified a fairly accurate relationship. This comparison provided the necessary evidence to show the relationship can be scaled.

Thus, it is possible to accurately predict the effectiveness of a grout curtain knowing three parameters S/D ratio, dry unit weight and area replacement index. Quantifying the effectiveness of a grout curtain gives engineers the ability to optimize their design, while providing an adequate solution.

The research that was presented in this thesis only covered five S/D ratios at five dry unit weights for one test media. This does not cover a wide enough spectrum to consider this a relationship to be used by industry for design. However, there is evidence presented in this thesis that supports the use of this newly developed quantifiable

relationship to assess the effectiveness of a grout curtain. This is a significant step forward in the direction of assessing the effectiveness of a grout curtain quantifiably rather than qualitatively. The time and money that would be saved, further justify more research to be completed for this quantifiable relationship.

Future research should be aimed at further understanding the relationship between normalized Lugeon values with respects to S/D ratio and dry unit weight. This research showed that normalized average Lugeon values vary linearly as a function of S/D ratio, dry unit weight and area replacement index. However, the ranges of S/D ratios and dry unit weights were limited. Having a wider range of tests will allow for a better understanding of this relationship. Along the same lines, more test medias should be tested following the same procedures outlined in this research. As mentioned earlier, the quantifiable relationship that predicts the effectiveness of a grout curtain takes into account two material constants b_3 and m_3 . Using different test medias will help determine these material constants and will provide further understanding of this quantifiable relationship. This proposed research could ultimately lead to a more accurate and useful relationship.

Appendix A:

Index Testing on Test Sand

Sieve Number	Opening (mm)	Weight Retained Each Sieve (g)	Weight of Soil Retained (g)	Weight of Soil Passed (g)	Percent Finer
3/8"	9.500	0.00	0	1471	100.000
No. 4	4.750	0.00	0	1471	100.000
No. 10	2.000	0.00	0	1471	100.000
No. 20	0.850	11.80	11.8	1459.2	99.198
No. 40	0.425	18.10	29.9	1441.1	97.967
No. 60	0.250	183.20	213.1	1257.9	85.513
No. 100	0.150	997.10	1210.2	260.8	17.729
No. 140	0.106	127.60	1337.8	133.2	9.055
No. 200	0.075	66.30	1404.1	66.9	4.548
Pan	0.000	66.90	1471	0	0.000
	Total	1471			

Table A.1: Particle grain size analysis data (ASTM D6913) for Kentucky River sand.

Figure A.1: Graphical representation of the particle grain size analysis test for Kentucky River sand.

Specific Gravity							
Soil Description	Ky. River Sand		Ky. River Sand		Ky. River Sand		
Test number	1		2		3		
Nominal Pycometer Volume	500	ml	500	ml	500	ml	
Oven Dry Weight of Soil	100	g	96.3	g	89.2	g	
Weight of Pycometer+ Water	665	g	660.7	g	662.6	g	
Weight of Pycometer+ Water+Soil	727.4	g	721.1	g	718.4	g	
Temperature	20	deg. Cels	20	deg. Cels	20	deg. Cels	
Correction Factor K	1		1		1		
Specific Gravity	2.	66	2.	68	2.	67	

Table A.2: Specific gravity data (ASTM D854) for Kentucky River sand.

Sieve Number	Opening (mm)	Weight Retained Each Sieve (g)	Weight of Soil Retained (g)	Weight of Soil Passed (g)	Percent Finer
3/8"	9.500	0.00	0	1073.58	100.000
No. 4	4.750	38.92	38.92	1034.66	96.375
No. 10	2.000	139.27	178.19	895.39	83.402
No. 20	0.850	228.65	406.84	666.74	62.104
No. 40	0.425	451.43	858.27	215.31	20.055
No. 60	0.250	179.37	1037.64	35.94	3.348
No. 100	0.150	32.46	1070.1	3.48	0.324
No. 140	0.106	1.35	1071.45	2.13	0.198
No. 200	0.075	0.33	1071.78	1.8	0.168
Pan	0.000	1.80	1073.58	0	0.000
	Total	1073.58			

Table A.3: Particle grain size analysis data (ASTM D6913) for Ohio River Valley Sand.

Figure A.2: Graphical representation of the particle grain size analysis test for Ohio River Valley sand.

Specific Gravity								
Soil Description	Ohio Rive	Ohio River Valley Sand Ohio River Valley Sand C			Ohio Rive	r Valley Sand		
Test number	1		2			3		
Nominal Pycometer Volume	500	ml	500	ml	500	ml		
Oven Dry Weight of Soil	103.2	g	112.3	g	110.8	g		
Weight of Pycometer+ Water	678	g	683	g	664	g		
Weight of Pycometer+ Water+Soil	742.3	g	753.1	g	732.6	g		
Temperature	20	deg. Cels	20	deg. Cels	20	deg. Cels		
Correction Factor K	1		1		1			
Specific Gravity		2.65		2.66		2.63		

Table A.4: Specific gravity data (ASTM D854) for Ohio River Valley sand.

Appendix B:

Step-by-step Manual for Program Development in LabVIEW 2012

The pore pressure transducers used in this research were the Kulite XCL-11-250-150SG sealed gauge pore pressure transducers rated at 150 pounds per square inch. The three pore pressure transducers used in this research all contained calibration certificates provided by the manufacturer Kulite. The various information Kulite provided on these certificates will be essential data for the verification of Kulites calibration.

Wiring Modules

The first step in the calibration process of the Kulite XCL-11-250-150SG sealed gauge pore pressure transducers is to correctly assemble the module in the chaise from National Instruments(NI). The module that was used in the proper calibration of the Kulite XCL-11-250-150SG sealed gauge pore pressure transducers was the NI 9237 module. The NI 9237 module is a 4-channel, 24-Bit Half/Full-Bridge Analog Input Module. Figure B.1 shows the proper location within the NI chaise for the NI 9237 module.

Figure B.1: Proper Location for the NI 9237 Module in the NI chaise

The second step is to properly wire the three Kulite XCL-11-250-150SG sealed gauge pore pressure transducers to the sub-connector that will eventually be inserted into the NI 9237 module. The three Kulite pore pressure transducers were wired in a fully active four arm wheatstone bridge. Each pore pressure transducer has five individual

wires running from the pore pressure head with their own distinct color. Figure B.2 is showing the five different wires running from the Kulite XCL-11-250-150SG sealed gauge pore pressure transducer.

Figure B.2: Wires within each Kulite XCL-11-250-150SG sealed gauge pore pressure transducer

The red wire corresponds to the positive excitation input, the black wire corresponds to the negative excitation input, the green wire corresponds to the positive analog output, the white wire corresponds to the negative analog output, and the thick silver wire is the electrical ground wire.

Once one is familiar with the different types of wires that are within each Kulite XCL-11-250-150SG sealed gauge pore pressure transducer, it is time to wire all three pore pressure transducers to the NI sub-connector. Figure B.3 shows the proper way to wire each of the three Kulite XCL-11-250-150SG sealed gauge pore pressure transducers in a fully active four arm wheatstone bridge configuration.

It is important to note that the ground wires for each of the three Kulite XCL-11-250-150SG sealed gauge pore pressure transducers were connected to the negative excitation input pin due to grounding issues. A voltmeter was used to check that there was no significant voltage difference between the ground wire and the negative excitation input pin.

Once the wires are correctly connected to the NI sub-connector, insert the NI Subconnector into the NI 9237 Module as seen in Figures B.4 and B.5.

Figures B.4 (Top) and B.5 (Bottom): Show the connection of the NI sub-connector to the NI 9237 Module

Once the NI sub-connector is inserted into the NI 9237 Module which is then inserted into the NI chaise like Figure 1 shows, it is time to start acquiring data through National Instruments LabVIEW 2012 software.

LabVIEW Program Set-Up

Now it is time to install National Instruments LabVIEW 2012 software into the computer. The LabVIEW 2012 software comes with two cd-ROMs, both of which need to be installed for full use of the software. Once both cd-ROMs are installed, open up NI MAX to make sure that the modules are being read by the LabVIEW 2012 software, after being connected through the USB port. Once the NI MAX user menu opens up, there will be a box along the left hand side of the window. Now click on Devices and Interfaces. The following window should look like the Figure B.6 if the LabVIEW 2012 software is recognizing the NI chaise and NI 9237 Module correctly.

Figure B.6: NI Max user window showing the NI chaise and NI 9237 Module being recognized by LabVIEW 2012.

The next step in getting the data aquistion system working is to open up a brand new VI page in LabVIEW 2012 software. Once you open up a new VI work page, two windows should appear; the first being the Block Diagram, and the second being the

Front Panel. The Block Diagram is where the actually computer code is written and the Front Panel is where all the data is displayed. The figure below shows the two windows that appear when you open up a new VI work page.

Figure B.7: Shows the Front Panel and the Block Diagram windows once opening up a new VI work page in LabVIEW 2012.

To begin writing code for the data aquition system, the functions window must be opened in the Block Diagram window. To open the functions window, right click anywhere in the Block Diagram window and click on the push pin in the upper left hand corner of the functions window. Now the functions window should appear and look like the Figure B.8

Figure B.8: Shows the functions window opened in the Block Diagram. Also shows the location of the search menu button.

Now that the function window is opened in the Block Diagram, it is time to start configuring functions to acquire pressure data from our three pore pressure transducers. The first function needed is the DAQ Assistant. To find the DAQ Assistant function, click on the "Search" button in the top left corner of the functions and type in "DAQ Assistant". This can be seen in Figure 8 above. Click and drag the DAQ Assistant Input Icon anywhere on the Block Diagram. A window will appear asking what type of signal it is. Click on Acquire Signals. More options will appear under Acquire Signals. Click

on Analog Input. Once again more options will appear under Analog Input. Click on Pressure then Pressure(Bridge). Now a new window will appear asking for what channels are going to be used. Click on the plus sign to the left of where it shows the NI 9237 Module. This will allow you to see all the different channels within the NI 9237 Module. Since we will only be using three pore pressure transducers, we only need to select channels ai0, ai1, and ai2. Then click the finish button in the bottom of the window. The window for selecting the channels should look like Figure B.9.

Figure B.9: This figure is showing the three channels that need to be selected to acquire data from the three different pore pressure transducers.

After clicking the finish button, the DAQ Assistant window will appear. On the left hand side of the DAQ Assistant Window, a little box titled "Channel Settings" should appear.

Make sure to highlight all three channels named Pressure_0, Pressure_1, and Pressure_2 so that all three channels can be set up the exact same way. Under the tab "Settings" there are many boxes for user input. Under "Signal Input Range", the maximum input is 150, the minimum input is 0 and the scaled units are pounds per square inch(psi). The bridge type selected should be Full Bridge and the Vex Source selected should be Internal. The Vex Value is 10 volts and the bridge resistance is 1000 ohms(1k ohms). Select <No Scale> for Custom Scaling. Under "Time Settings" the acquisition mode selected should be Continuous Samples, the Samples to Read should be 1613(1.613k) and the Rate should be 1613 hertz(1.613k). Figure B.10 below shows all the user input under the settings tab in the DAQ Assistant window.

Figure B.10: Shows all the user input that are required for all three channels. By highlighting all three channels at once all the user inputs for all channels will be changed.

After inputing all the user inputs under the settings tab, highlight the first pore pressure transducer (Pressure_0) and click on the "Configure Scale" button which can be seen in Figure B.11.

Configuration	Triggering Advanced	l Timing	Logging		
Channel Settin	ngs				
+×5	Details 📎	Pr	essure (Bridge)	Setup	
Ress	ure_0		🕤 Settings 🛛 🎫	Device 🛛 🐔 Calibrati	on
Press	ure_2		-Signal Input Range) Casled Units	
			Max 1	50 Scaled Units	~
			Min	0	
			Bridge Type		
			Full Bridge 💽	Configure So	ale
			/ex Source Internal	/	
Click the A	dd Channels button		/ex Bridge		
(+) to add the task.	rmore channes to		/alue (V) Resistanc 10 1	e Custom Scaling k	v 🖉
		×			
—Timing Setting	s				
Acquisition Mo	de		Samples to Rea	d Rate (Hz)	
C	ontinuous Samples		/	1.613k	1.613k

Figure B.11: Shows the location of the configure scale button for pore pressure transducer Pressure_0.

Upon clicking the "Configure Scale" button for the first pore pressure transducer, a new window will appear asking for more user input. Under scale type select "Two-Point Linear". Under electrical, type in 0 for the "First Value" box and 0.0737 for the "Second Value" box. The 0.0737 value is the sensitivity value that comes from the calibration sheet provided by the pore pressure transducer manufactureer divided by 10. Under physical, type in 0 for the "First Value" box and 1 for the "Second Value" box. Make sure the units under the electrical section is mV/V and units under the physical section are psi. Then click the "OK" button. Figure B.12 shows the exact user input for the first pore pressure transducer.

Figure B.12: Shows the user inputs for the first pore pressure transducer(Pressure_0).

Now repeat the same process to configure the scale for the second pore pressure transducer (Pressure_1). Highlight the second pore pressure transducer (Pressure_1) and click on the "Configure Scale" button which can be seen in Figure B.13.

Configuration Triggering Advanced Tir	ning Logging
-Channel Settings	
Details >>>	Pressure (Bridge) Setup
Ressure_0	🚰 Settings 🛛 🎫 Device 🧏 Calibration
Ressure_1	
K Pressure_2	Signal Input Range Scaled Units Max 150 Min 0
	Bridge Type Full Bridge Configure Scale Vex Source Internal
Click the Add Channels button (+) to add more channels to the task.	Vex Bridge Value (V) Resistance Custom Scaling 10 1k <no scale=""></no>
Timing Settings	
Acquisition Mode	Samples to Read Rate (Hz)
Continuous Samples	✓ 1.613k 1.613k

Figure B.13: Shows the location of the configure scale button for pore pressure transducer Pressure_1.

Upon clicking the "Configure Scale" button for the second pore pressure transducer, a new window will appear asking for more user input. Under scale type select "Two-Point Linear". Under electrical, type in 0 for the "First Value" box and 0.0738 for the "Second Value" box. The 0.0738 value is the sensitivity value that comes from the calibration sheet provided by the pore pressure transducer manufactureer divided by 10. Under physical, type in 0 for the "First Value" box and 1 for the "Second Value" box. Make sure the units under the electrical section is mV/V and units under the physical section are psi. Then click the "OK" button. Figure B.14 shows the exact user input for the second pore pressure transducer.

Figure B.14: Shows the user inputs for the second pore pressure transducer (Pressure_1). Finally repeat this same procedure for the third pore pressure transducer(Pressure_2). Highlight the third pore pressure transducer (Pressure_2) and click on the "Configure Scale" button which can be seen in Figure B.15.

Configuration	Triggering Adva	ced Timing Logging
-Channel Setting	s	
+× ×	Details 🔰	Pressure (Bridge) Setup
🕷 Pressun 🕷 Pressun	e_0 e_1	Settings 📷 Device 🗞 Calibration
🤌 Pressuri	e_2	Signal Input Range Max 150 Min 0 Psi V
		Bridge Type Full Bridge Configure Scale Vex Source Internal
Click the Adl (+) to add n the task.	d Channels button nore channels to	Vex Bridge Value (V) Resistance Custom Scaling 10 1k No Scales
Timing Settings		
Acquisition Mode	e Normalia	Samples to Read Rate (Hz)
Cor	ntinuous samples	▼ 1.613k 1.613k

Figure B.15: Shows the location of the configure scale button for pore pressure transducer Pressure_2.

Upon clicking the "Configure Scale" button for the third pore pressure transducer, a new window will appear asking for more user input. Under scale type select "Two-Point Linear". Under electrical, type in 0 for the "First Value" box and 0.0674 for the "Second Value" box. The 0.0674 value is the sensitivity value that comes from the calibration sheet provided by the pore pressure transducer manufactureer divided by 10. Under physical, type in 0 for the "First Value" box and 1 for the "Second Value" box. Make sure the units under the electrical section is mV/V and units under the physical section are psi. Then click the "OK" button. Figure B.16 shows the exact user input for the third pore pressure transducer.

Figure B.16: Shows the user inputs for the third pore pressure transducer (Pressure_2).

Initial Pore Pressure Calibration

Now that all the settings are correct for all three pore pressure transducers the next step in this process is to calibrate all three pore pressure transducers at once. To make sure all three pore pressure transducers get calibrated at the same time, make sure all three channels are selected in the channel settings like in Figure B.17. Then click on the "Calibration" tab inside the DAQ Assistant window. After clicking on the "Calibration" tab the window you should be seeing should look like the figure below.

-channel Settings -channel Settings Pressure_0 Pressure 1	Pressure (Bridge) Setup)
Click the Add Channels button (+) to add more channels to the task.	Calibration Calibrate Enable Calibration Delete Calibration When changing calibration se and Max input ranges on the	Calibration Date [12/31/1903] Expiration Date [12/31/1903] ttings, verify that the Min Settings tab are still valid.
Timing Settings Acquisition Mode Continuous Samples	Samples to Read	Rate (Hz)

Figure B.17: This figure shows the window that should appear when the "Calibration" tab is clicked within the DAQ Assistant window.

Once this window appears click on the "Calibrate..." button which can be seen in Figure B.17. The user will be asked to type in the calibrator's name then click the "Next" button. Then the Channel Calibration Wizard Window should appear. NI LabVIEW 2012 will ask for additional user input for the number of samples to average and the sample rate at which the software will acquire data. However, it is important to note that the user should not have to input any information since the NI LabVIEW 2012 software has defaulted values for this criteria. The defaulted values for the number of samples to average to average and the user input, in our case the defaulted values in the Channel Calibration Wizard window.

Fill in the acquisition attributes and any other information about this calibration (for example, the serial number on the sensor or the current temperature.)		Acquisition Attributes Number of samples to average 25000 Sample Rate (Hz) 25000
The acquisition attributes are used when calibrating the channel. Consider selecting a sampling rate that is a multiple of the power line frequency (50 or 60 Hz) and/or is 2 times the sampling rate used for this channel in your application.		Additional Information Channel: Pressure_0
	~	Apply Information to All Channels

Figure B.18: This figure shows all the user input for the Channel Calibration Wizard window.

After all the user input is in the Channel Calibration Wizard window click the "Next" button to proceed in the calibration process. Now a new user panel within the Channel Calibration Wizard window will appear. There will be a table that will appear in this new

user panel. There should be three columns, a Reference column, an Uncalibrated column and a Difference column. You will be able to see this table in Figure B.19. The Reference column is the only column that user input is required.

Channel Calibration Wizard							
				X			
Collect calibration measurement values.	^		Reference	Uncalibrated	Difference	~	
			0.0000	-5.6835	5.6835		
 Enter the reference value of the measurement on the row indicated by 		-	1.0000	-5.6840	6.6840		Pause
channels, all channels must have the same signal and reference value.							Delete Row
2. Setup your signal to take a measurement at the specified							Sort Rows
shown in the Uncalibrated column to stabilize.						~	Scientific Notation
press the Enter key to accept the calibration pair. When calibrating	~		Com	nmit Calibration Value	,		Units: psi
				< Back Nex	t > Fir	nish	Cancel

Figure B.19: Shows the values that should be inserted into the Reference Column of the Channel Calibration Wizard window.

Before proceeding any further with the calibration of these three pore pressure transducers within the NI LabVIEW software, one should find a tall narrow cylinder that is approximately 32 inches tall. This cylinder will be used to help in the calibration of these pore pressure transducers. Put a thin piece of tape along the length of the cylinder. Now make marks on this piece of tape that correspond to 0.1 psi increments starting at 0 psi and ending at 1.0 psi. To find the correct heights for different pressure heads use the following equation:

$$\sigma = \gamma H \tag{B.1}$$

Where $\sigma = pressure$, $\gamma = unit$ weight of water, and H = height

Once all the pressure increments are marked on the calibration test tube, the calibration test tube should look similar to Figure B.20.

Figure B.20: Shows the bottom half of the calibration test cylinder. Also shows the incremental pressure markings along the outside of the calibration test cylinder.

Once all the pressure increments are marked on the calibration test tube, continue with the calibration process within the NI LabVIEW 2012 software. User input is only required in the Reference column of the Channel Calibration Wizard window. Once all three pore pressure are correctly wired like Figure 3 to the NI sub-connector, and the NI sub-connector is plugged into the NI 9237 Module like Figure 5 and the NI 9237 Module is inserted into the correct location of the NI chaise seen in Figure 1, place all three pore pressure transducers at the bottom of the calibration test tube where the test tube marking should indicate 0 psi. In the first row of the Reference column insert the value 0. The Reference column is the so called "theoretical" pressure values that the pore pressure transducers should be reading. The Uncalibrated column shows the raw data values that are coming from the pore pressure transducers. Once the Reference value for the 0 psi marking is inputted, click the "Commit Calibration Value" button at the bottom of the window. Now fill the calibration test tube up with room temperature water to the 1.0 psi

marking. In the second row of the Reference column type in the number 1, then click the "Commit Calibration Value" button at the bottom of the window. Click the "Next" button until you see a window that shows a "Finish" button. Once you see the finish button at the bottom of the window click it. Then inside the DAQ Assistant window click the "OK" button in the bottom right hand corner. The Block Diagram should now look similar to Figure B.21.

Figure B.21: Shows the DAQ Assistant function icon on the block diagram after being calibrated.

Once the DAQ Assistant function is in the Block Diagram, the next function to insert into the block diagram is the Sample Compression function. To insert the Sample Compression function, go back to the functions tool bar, click on the "Search" button and type in "Sample Compression". When the icon for the function appears, drag and drop the function anywhere in the Block Diagram window. A window will appear after inserting the Sample Compression function. The window that pops up should look like Figure 22. The only user input in this window is the reduction factor. The reduction factor should be set to 1613 and the reduction method should be mean. After these user

inputs are inserted click the "OK" button. The outlined red boxes in Figure B.22 show the user where all the user inputs are located for the Sample Compression function.

Figure B.22: Shows the window that pops up after inserting the Sample Compression function into the block diagram. The red boxes indicate where user input is required.

The next function to be inserted into the Block Diagram is the Dynamic Data Type function. To insert the Dynamic Data Type function, go back to the functions tool bar, click on the "Search" button and type in "Dynamic Data Type". When the icon for the function appears, drag and drop the function anywhere in the Block Diagram window. A window will appear after inserting the Dynamic Data Type function and should look similar to Figure B.23. Under resulting data type, select "2D array of scalars-columns are channels". Also, under Scalar Data Type select "Floating point numbers (double)". The red outlined boxes show where user inputs are required.

Figure B.23: Shows the window that pops up after inserting the Dynamic Data Type function into the block diagram. The red boxes indicate where user input is required.

Now insert the Insert Into Array function into the Block Diagram. Go back to the functions tool bar, click on the "Search" button and type in "Insert Into Array". When the icon for the function appears, drag and drop the function anywhere in the Block Diagram window. Do the exact same procedure but for the Output Array. Once all the functions are in the Block Diagram enclose the functions within a while loop so continuous measurements can be taken.

Once all the functions are within the while loop in the Block Diagram, take a look at Figure B.24 to see the correct wiring connections between functions.

Once all the connections are made similar to Figure B.24, it's time to start acquiring data from the three pore pressure transducers. By hitting the "Run" button on the Block Diagram, a table of numbers will appear which should look similar to Figure B.25. The first column shows pressure values coming from the pore pressure transducer in channel ai0, the second column shows pressure values coming from the pore pressure transducer in channel ai1, and the third column shows pressure values coming from the pore pressure transducer in channel ai2.

2	Pressure_0	Pressure_1	Pressure_2
0	0.228599	0.445427	0.876372
÷) 0	0.228622	0.445428	0.876805
×	0.228493	0.445357	0.87638
	0.228309	0.445419	0.877293
	0.228349	0.44499	0.877179
	0.228163	0.445032	0.875683
	0.228446	0.445141	0.875325
	0.228648	0.445245	0.875689
	0.228832	0.445143	0.875852

Figure B.25: Shows the table that will appear after hitting the "Run" button in the Block Diagram. This table will appear in the Front Panel.

Secondary Calibration

Once values are appearing in the table, it's time to verify that these readings from the pore pressure transducers are in fact reading the correct pressure. First secure all three pore pressure transducers with a piece of tape to the bottom of the calibration test tube. Next start filling up the calibration test tube with water, to levels that correspond to the different 0.1 psi incremental markings. First start with 0.1 psi and start working your way up until you reach 1 psi. All three pore pressure transducers should be reading similar numbers at every 0.1 psi increment. If this is not the case, a secondary calibration must be performed to verify that the readings are accurate. The secondary calibration is similar to the first calibration that we performed in NI LabVIEW 2012. The first step in the secondary calibration is to make sure all the pore pressure transducers are at the same moisture content. To make sure all three pore pressure transducers are at the same moisture content, dip them into water for approximately one minute. Once the pore pressure transducers have been sitting in water for one minute, let all three pore pressure transducers air dry for 24-hours. After all three pore pressure transducers are at the same

moisture content, secure them to the bottom of the calibration test tube with a piece of tape. Then fill the calibration test tube with water up to the 0.4 psi marking. Run the code in NI LabVIEW 2012 and pick a number from each column that is representative of the pressure readings for each pore pressure transducer. Formulate three tables, one for each pore pressure transducer in Microsoft Excel. All three tables should have a column for LabVIEW pressure readings and a column for theoretical pressure values. The theoretical pressure values are the markings on the side of calibration test tube. Once you have picked a representative number for each pore pressure transducer at the 0.4 psi marking on the calibration test tube, insert values into your Excel table under the LabVIEW pressure readings column. Continue the above procedure at every 0.2 psi marking starting at 0.4 psi and ending at 1.0 psi on the calibration test tube. Thus, you should have a total of 5 different LabVIEW pressure readings and 5 different theoretical pressure values for each pore pressure transducer. Now, plot LabVIEW pressure readings versus theoretical pressure values for all three pore pressure transducers. Insert a linear trendline and display the equation of the trendline on the graph. Each pore pressure transducer will have a separate linear equation.

Now, the raw values that come from LabVIEW have to run through the specific equation for that pore pressure transducer that came from the secondary calibration. Once the secondary calibration is complete, nest the three different pore pressure transducers at different pressure markings inside the calibration test tube. Run the NI LabVIEW software, grab representative pressure readings for all three pore pressure transducers and then calculate the new pressure values by using the equations from the secondary calibration. These new pressure readings should match up to the pressure

markings on the calibration test tube where the pore pressure transducers are nested. The pore pressure transducers are now calibrated and ready to be used for application.

Appendix C:

Raw Data

	geonValue- Gauge 14	920784811	9031197309	266/10/0716	902011969	89,453,49166	87,2002498	%12393639	8757871249	%00857774	845715889	8241085308	80360366	799609926	7530769413	TK41347622	75.86275617	74,7630679	719762409	7115450108	N.36176568	7157060666	83h6h72210L	6795277858	7105590052	7602718672	76.19180763
	geon Value – Lu Gauge 12	92.79061165	9153652676	53666676	92.83772499	61606016	8011995188	1288005.18	87.14866726	8448702972	99r4030h799	74223402.02	8442380751	86.4499197	81.68642951	78.51633871	77.3696825	16096821-92	77.379905	74.95097336	71.69082125	77.3653927	78.4570121	75.44757083	77.177563	77.8621148	78.2094752
	geonValue- Lu Gauge 13	9257581857	30163016222	9221492962	9266731105	2085357209	8991435807	90,0000000	88.7169512	87,85395461	23137978182	8419092768	8404133783	910500516	77.39160513	1/1/5732718	80137583798	3066682708	7108372888	75,96366197	6188520062	781270903	7631822387	2216063622	7851480772	79.00621118	789859775
	Normalized Average Lugeon Uu Value		0.989467694	0.992691357	196060961	0.980210328	0.957351492	0.94190051	0.94943622	0.930759201	0.93304055	2M1M2P01	0.83870199	0.901672418	0.843846139	0.85058916	0.841524188	0.840790257	0.815266171	0.79976587	0.79477223	0.81310308	0.811210708	0.798020865	0.815721991	0.839227845	01,84099955
	Average Lugeon Value	30,4007385	81829905716	67.19061.16	92.1348943	90.65051162	815351108	87.10157914	550060828	86.07723812	86.28654297	87.13915119	831126658	81.38727276	23034630.87	78.6727664	17.82474	77.75685233	75.39636402	73.96102926	73.50113679	75.19636056	75.02131287	73.8015073	75.43651937	77.61235661	77.7756539
	Normalized Flow Loss		0.97557855	106252500	09427348	0.8929538	1812726131	0.801050915	MJ9096210	0.674035151	97225390	0.63391665	0.579815184	01544653888	0.46600646	1///6669/10	0.413943088	0.346600765	0.29426206	84732653210	0.0688920	0.064540678	0.239173763	0.213806849	0.207263928	0.201666969	0.197499547
	Flowlass (Cout/Time/Length) (Vinin/meter)	8406166240	046808657	0457478261	0.6547826	04057260-0	82146140160	03949428	035495622	1323478261	0314521739	130404080	127225087	0.061391304	0.22373913	0211130435	019808896	016697826	0141217391	19993610	8749405210	0120006622	0014782609	0100608596	1903/146000	009282600	0094782609
	Length Interval (m)	990	950	950	940	940	940	940	940	940	98	940	940	940	940	940	940	940	940	940	940	940	940	940	90	990	950
	Time (mins)	8	9	9	92	9	99	ю	ю	ю	ю	8	ю	ю	ю	9	ю	ю	ю	ю	ю	ю	ю	ю	ю	19	19
	Qout (ml.)	529	88	2001	53	806 ²	199	ij	400	3720	3617	69£	002	300	62	80N	15	1913	1624	1951	1691	1460	1300	1180	114	E	1090
/ and Secondary-Spaingd PDia of Pipe	Area Aeplazement Ratio- Multiply by the inverse of Maximum Agc, Ruotal	0	01111111	0.148148148	0.135135135	0.2222222	6266266210	90390390	0.33333333	CENENED	0.407407407	0.4444444	0.481481481	0.518518519	0.55555556	0.59269263	66296290	199999990	O, TUGTUGTOA	D-MODADJAT	0.7777778	0.814814815	0.651651552	0.83333999	90652652610	0.952952953	1
PVC Fipe-Primer 0.1	Normalized Grouted Area Agg(Atotal	0	0.0990535	0.046542113	0.058177642	0.06981317	0.081448698	122400600	0.104719755	0.116355283	0.12799812	0.13962634	0.151261869	0.162997397	017452005	0.186168454	0.197803922	130943021	0.221075039	122710567	0.244346055	0.25988624	0.067617152	0.27925368	073030070	0.30523737	0.314159265
ry and Secondary-Touching	AreaReptacement Ratio Multiply by the inverse of Maximum Agg/Atotal	0	01111111	0148148148	0155155155	000000	62652620	96296290	03333333	0.37037037	0407407407	04444444	0.481481481	0.518518519	05555556	0.99299393	0.62962963	199999990	ACCOUNT OF	D-MODADIAT	0.7777778	0814814815	0.51.51.52	033333300	906306300	062962963	1
PVCPipe Prime	Normalized Grouted Area Agc.(Atostal	0	104963231	0.058177642	23022200	0.08736463	0.101810873	0.116355283	0.13089694	0.14544104	0.15999515	0.17453255	0.129077336	0.209621746	0.218166156	19901/2270	0.24754977	0.261799388	0.276343798	60288806710	0.305420519	031997703	M1224620	034906565	0.363610261	0.378154671	0.30669062
C Side By Si de	AreaReplacement Ratio- Multidy by the inverse of Maximum Agc, Nuotal	0	01111111	0.143143143	0.155155155	0.222222	0.2625559	0.26296296	0.33333333	037057057	0.407407407	0.4444444	0.481481481	0.518518519	0.55555556	0.5925253	062962963	U99999990	ACCENCED A	TAUMUNU D	0.7777778	0.814814815	0.651651552	03333330	0.9292936	0.962962963	1
М	Normalized Grouted Area Agc/Atodal	0	0.08726463	0.116355283	014544104	0.17452005	0.209621746	122710567	0.06179338	0738806710	0.31997703	0.34906565	0.378154671	0.407243492	0.49632213	0.465421134	0.49450955	91196522510	96518925510	0.581776417	0.610865238	0.63954059	0.6690238	0.698131701	072720522	0.75630343	0.765392163
Slats	Area Repacement Ratio Multiphybyte inverse of Maximum Agg Atotal	0	01111111	0.143143143	0.155155155	0.222222	0.2625559	0.26296296	0.33333333	0.37037057	0.407407407	0.4444444	0.481481481	0.518518519	0.55555556	0.5925253	0.62962963	U99999990	HATEOTEON.D	TAUMUNU D	0.7777778	0.814814815	0.651651552	03333330	0.9292936	0.962962963	1
	Normalized Grouted Area Agy Atot al	0	01111111	0.148148148	0.185185185	0,222222	65363365710	126296296	0.3335555	137037037	0.407407407	0.444444	0.481481481	0.518518519	9999999990	0.9926268	0020030	199999991	HULBULEUU D	1MOMON10	0.7777778	0.814814815	0.851851852	0.8333339	9062662610	0.962962961	
	Normalized Avg. Pore Pre sure (XP a)	1	6166213950	2476096.0	169020950	0.907245622	0.89057215	13942340530	1896968/1/0	10847144210	10040364	067264673	0646169579	0604059609	0552479445	0517150665	0081778005	0.4122591	0.360930502	N715205920	0338322199	030346965	0.2948556	0267921377	025411097	0240300617	0234840539
	Normalize d Pore Pre sure-Gauge 14(1/24)		19994690	M10102960	14064/8550	1952855160	0.899865522	0.94923480	0.77762855	0.721603991	121354564	0.708965311	1616946300	0627014582	0270130698	N62220650	02020279	5346689070	0376428987	035707335	0.351890276	1345165004	0311396777	H091268210	0,266(10998	230H4204210	6966198270
	Nomalized Pore Pressure-Gauge 12)(24)		0.99452096	0.962109635	0.946249033	0.897331787	0.83217204	0.849187935	199605182.0	852217DPT.0	0,702,0059	0.652165507	0.637277649	0.591453963	19628562510	0.519914927	0.49620573	0.410092807	0.352661562	0.351508121	0.348027842	0.317265383	0.22266026	0.0629487	0.24925605	932830420	0.23438747
	Normalized Pore Pressure-Gauge 13(APa)		0.97820216	0366963025	636942360	19088060	036769753	0,853973765	17713784	9462900120	069099519	0.65779221	8865698290	0233557099	694/19/550	0201350309	0476658951	0399691358	0353395062	0346054815	0315007716	0313464506	1346710670	02099209	0244405864	0296304012	0231481481
	e- Avg. Pore b) Pressure (MPa)	5189	SIIS	1857	4931	4708	885 7	4413	406	3758	3665	3402	3348	3135	2867	2684	2552	2139	1873	180	175	168	1530	1390	1319	1247	1219
	re- Pore Presu Pa) Gauge 14(K	5.212	5183	5014	4997	177	89F	4401	408	3761	3719	3692	3487	3326	162	2763	2618	522	1962	1915	1891	1799	163	151	ы	123	1244
	auge Pone Pressi Gauge 12)ki	517	2002	4976	1697 1	161	387 7	430	403	381	3637	3373	957	309	2739	2689	1957	2121	23	1818	180	161	148	1360	1289	1248	1212
	Pore Presure-Ge 13(1/2a)	5.184	2071	1961	4908	4712	448	4407	4001	3682	3579	341	3311	3077	2891	239	2471	2012	182	113	168	165	1504	1901	1991	125	12
S(b=1	#of PVC Rip	-	~	4	~		1	~	6	8	Ħ	11	8	N	5	29	5	81	£1	8	21	2	8	M	8	25	2
		Run0	Run1	Ru2	Run 3	Run4	Runs	Run6	Run 7	Run 8	Run 9	Run 10	Run11	Run 12	Run 13	Run 14	Run15	Run16	Run 17	Run 18	Run 19	Run 20	Run 21	Run 22	Run 23	Run24	Run 25

Figure C.1: Raw Data from S/D=1, Unit weight = 12.56 kN/m^3

116

	geonValue- Gauge 14	930795155	93.35812324	9442016205	9351862986	92,23918002	8792726865	90.60545216	8904811705	\$54235469	8737247109	8466882593	82.99843376	8348876921	8473780774	835069952	8100545182	8034647638	7913230885	7950310559	79.25289111	793006566	8T/1336426
	geon Value- Lu Gauge 12	29.70598792	92.98172411	94.14343239	93.29745848	22269616106	8577766-38	90.12521125	86(60263388	\$5.05462426	88.74024G56	84.76271983	8136485703	84 66538789	83.30051408	80,92658099	80.1939957	77.46460549	79.3005417	80.19045232	80.25118408	80.01301907	80.9222575
	ugeon Value- L Gauge 13	93.60031541	93.646778	94.32773825	93.40791325	91.14311928	89.73821591	90.72631314	80.79660056	\$5.24975341	1688/182.18	84,95113377	N 8949994	85.5065906	\$5.15564703	82 59955516	82 39453013	78.4415029	78.83497865	79.77662545	80.4481195	80.61651135	82.0725854
	Normalized Average Luggon	1	1002157083	1 01261399	1 003014697	1256/1186-0	0.954408394	0.971627501	8103909610	0.915394556	S2V7553V25	0.910519136	19055206	8266820610	H6185290610	1.8840530	0.86170786	0.847494112	0.846570596	0.857133228	0.858759511	51057885910	0.8758309
	Lugeon Value	3053716305	74002539	91,2969705	3340791325	9143094155	83045136128	30.48491275	8948142393	85.24251044	8812971999	805006118	8407846396	8454451135	7H015782.H8	8233081381	90202050808	18227102257	7911809942	798223617	293333703	1935767267	8156558091
	Normalized Flow loss		1336566051	0993188744	0975802115	712010/160	01877237480	0841190177	9MA1A100210	0689370855	0677720022	0.6302047	0612654598	0509636136	0533966661	82552538+10	0420863954	0345223158	12M2M20E0	DV6829820	120029377	0.04894208	0.062054132
	Flow loss (Qout/Time/Length) (L(friin(meter)	0.465130435	0.494434783	0.481826087	0.473391304	0144485555	0.409565217	0.40006957	0.373913043	0.334494783	01328782609	0.30573913	0.297217391	0.276347826	8216065210	0.23573913	0.204173913	0.167478261	0.146869565	0.139130465	0.131130435	0.12826087	0.127130435
	Lê ngth hterval(m)	950	0.45	0.45	0.45	0.45	0.45	0.45	0.45	940	0.45	0.46	940	0.46	0.46	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	Time (mins)	9	Ю	Ю	Ю	9	9	9	92	19	92	92	92	Я	ю	Ю	9	9	9	9	92	8	92
	Qout(mL)	65	1/55	162	₩	5116	4710	889	(08)	×8	3781	3016	3418	3178	65	2011	346	1905	1689	160	1508	1415	140
and Secondary-Spacing of Dia of Alpe	ve afte placement Ratio- Nutiphly by the inverse of Maximum Agy (Alotal	0	0130434783	0173913043	0217391304	03696966	030434200	0347806087	0.39130438	0.434782609	0.47825087	0.52173913	1662125950	0.609695622	0662173913	N12299690	0739130435	0.725606696	189909230	086956217	8246405160	0356521739	1
PVCPipe-Primarys 05*C	Normalized A Grouted Area N Agr,(Nitotal	0	0034906565	0046542113	0058177642	0.06981317	0.081446698	7224806600	0104719755	0116355283	0127990812	0.13962634	0151261869	1620602910	0.17453205	0.186168454	0.197803982	0.20943951	0221075039	199012220	0244346095	N791865570	0.2678.7152
and Secondary-Touching	AreaReplacement Ratio- Multiply bythe inverse of Maximum Agg Abotal	0	013049783	840E1862110	N0E10E1120	036086665	0304942050	0347826087	0.391304348	0434782609	0.47826087	0.52173913	162173950	2393556000	61657173913	N172996690	0739130455	9650092820	030608957	172996680	091304978	6621239650	-1
PVC Ripe-Ariman	Normalized Grouted Area Ag/At otal	0	104363231	0.058177642	0.07272052	0.087266463	0.101810873	0.116355263	0.13089694	0.14544104	0.159988515	0.174532925	0.189077336	0.203621746	0.218166156	0.232710567	0.2475/977	0.261799388	0.276343798	0.29088209	0.305432619	0.31997703	0.33452144
SideBySide	AreaReplacement Ratio- Mutiphyby ble inverse of Maximum Agr,Atottal	0	0.13049783	0.173913043	0.217391304	0.26066565	902/45/0610	0.347826087	0.391304348	0.434782609	047826087	052173913	0.565217391	0.60655552	0.652173913	N172996910	0.739130455	0.722608696	1899997310	0.899565217	0.913043478	0.956521739	1
PIC	Normalized Grouted Area Agy(Atotal	0	0.08726463	0.116355283	0.14544104	0.17632925	0.203621746	0.222710567	0.061799388	602888062.0	0.31997703	0.34906565	178421875.0	0.407249492	0.496332313	0.465421134	0.494509955	9/186957510	0.552687596	0.581776417	0.610865238	0.639954059	80206691
Stats	Area Replazement Retio- Muticipty by the inverse of Maximum Age; Atostal	0	0.13049783	0.173913043	0.217391304	0.26086565	0.304947826	0.347826087	0.391304348	0.434782609	047826087	052173913	1621139510	0.608695652	0.652173913	0.695652174	0.739130455	9680902210	13550050210	0.86966217	0.913049478	0.95621739	
	Normalized Grouted Area Agy Atotal	0	011111111	0.148148148	0.185185185	0.2222222	62656562 0	0.296296296	0.333333333	037097037	0,407407407	0.4444444	1811811810	0.518518519	0.55555556	0.5926268	062962963	100000000000000000000000000000000000000	AUTOTOTA D	1PTOPTOPT.0	0.7777778	0.814814815	0.818182
	Normalize d Ng. Pore Pressure (NPa)	1	0.996416688	0.90067673	0.97286909	0.994020666	0.894566163	0.865753775	0.802149987	0.753135398	0.716150499	0.692155106	11/28887610	0.627463527	0.589198874	01549654466	0.484770924	040734579	0.366947581	0.394591758	0.314755567	0.307844894	0.29900652
	Normalized Pore Pressure-Gauge 14(NBa)	1	0198889107	0.97906723	0.971220261	0.92564543	0.89370683	0.864159622	0.805640829	0.75115119	0.721987721	0.692824252	0.687068304	0.65072909	0.596531082	0.541634689	0.48963294	0.39696554	0.356101305	0.335763622	0.317536454	0.310245587	0.296541827
	Normalized Pore Pressure-Gauge 12()/9a)	1	0.995604816	0.978024078	0.969615899	01355027709	170614678.0	0.855278043	0.797469277	0.751385439	0.708006879	0.689279572	0.6722794	0.623733996	0.594114275	996599950	01495527804	0.413147334	0.35525702	033154978	0.312249188	0.30625244	0.30210204
	Normalize d Pore Pre scure-Gauge 13(XPa)	1	0.998070615	0.985529616	0.977812078	0.94772587	0.830571098	01363736	0.80535717	0.75689755	851205817.0	18458246910	0.675477523	0.023577079	0.586918773	0.550646344	0.478101486	0.411923596	0.35944677	0.336494661	0.314489678	0.306965078	0.29961663
	Avg. Pore Pressure (VPa)	5209	5.191	5.110	5068	486	4608	4510	413	32	3.731	3605	388	3,269	308	2863	252	212	186	178	1640	1604	1589
	- Pore Pressure Gauge 14()/Pa	522	5189	5108	2005	535 7	4658	1057	4199	3915	3763	3611	3581	331	3057	2823	2552	2069	599	13	5997	1617	1555
	uge Pore Presure- Gauge 12(109)	5.23	5.21	5.118	5.074	4.893	4602	4528	413	3922	3.705	3.607	3523	3.064	3.109	2913	2546	2162	18	1735	1691	1603	121
	Pore Pressure-Ga 13(Pa)	5.183	5.03	5.108	5,088	4.81	1921	4498	4164	399	3.24	3399	3.91	320	3002	2.64	248	2.155	188	174	168	191	159
\$11=0\\$	# of PVCPipes	-		4	2	9	7		6	9	=	11	13	14	5	16	1	81	19	00	21	2	8
		Run0	Run1	Run2	Run3	Run4	Run5	Run6	Run 7	Run 8	Run9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17	Run 18	Run 19	Run 20	Run 21

Figure C.2: Raw Data from S/D=1.18, Unit weight= 12.56 $\rm kN/m^3$

www.manaraa.com

117

	ion Value- auge 14	93.2391221	92.8416776	92.4723227	92 5234889	92 1344496	90.57971014	89.31915752	87.3405696	90.280116	87.00236071	83.06574476	83.757U3762	83.49067584	82 65526972	80.93460195	82 24160577	82 12322761	82.97413793
	n Value Iuge Jge12 G	8.00740568	2.62796187	8 12052834	2 84871331	L 75238215	183597483	18505681	88.0157251	3.20876357	3 66155158	18262355 8	LS7723903	2 72786684	2 06062749	3.09247438	4 60072752	33.4365426	1.42982456
	Value- Lugeo pe 13 Gar	13203276 9	5156582M 9	6 2234623	94871331 9	52466166 9	6 18849671	8814859 8	8270404	71066876 8	8 1652890	8 22805206	9083473 8	53981878 8	6032198 8	8 865251	87174169 8	10697026	85235077 8
	uegui neg	1 931	37363 936	75021 93	24861 92.8	52214 91.5	47751 901	67942 893	8 996/5	64829 901	10037 89.0	83502 835	03585 861	H6825 836	87001 82	62647 820	50409 833	128179 824	06898 813
	Normalized Average Lu Value		0.995	166.0	266.0	0.9881	12670	0.957	1995	2896-10	0.9331	0.890	0.896	0.805	0.895	0.858	0.820	0.80	0.899
	Lugeon Value	93.2391221	92.8416776	92.4722327	6050625376	921344496	9057971014	89.31915752	87.3405696	90280116	1/09620078	83.06574476	83.75703762	83.49067584	82.65526972	8133460195	82.24160577	8212322761	82.97413793
	Normalized Flow loss	1	0.992493298	0.982841823	0.977301162	0.909562109	0.857908947	0.831099196	0.772296693	0.742806077	0.678462913	0.633422699	0.60357462	0.5769437	0.539231467	0.480428954	0.436461126	0.343163539	0.316532618
	Flow Loss (Qout/Time (Length) (L/min/meter)	0.486521739	0.482869565	0.478173913	0.475478261	0.442521739	0.417391304	0.404347825	037573913	0.361391304	133008657	0.308173913	N123966210	0.280695652	0.2623478256	0.23373913	0.212347805	0.166956522	0154
	Le regiti Interval (m)	990	0.45	940	0.45	0.45	046	940	046	0.45	940	046	940	940	0.45	940	940	0.45	046
	Time (mins)	19	83	8	83	83	8	8	92	83	8	92	ю	8	83	8	8	83	22
4	Qout(ml.)	9995	55	885	2488	6805	4800	4650	4321	4156	3796	364	3377	3228	3017	2688	2442	1920	1771
yand Secondary-Spacingo S*Dia. of Pipe	Are a Replazement Ratio- Matic phythe inverse of Mosimum Agy Atobal	0	0.157894737	0.210526316	0.263157895	0.315789474	0.368421053	0.421052632	0.473684211	0.526315789	0.578947368	0.631578947	0.684210526	0.736842105	0.789479584	0.842105263	0.894736842	1242368421	
PVC Pipe Prima 0.	Normalized Grouted Area Agc (Notal	0	0034906585	0.046542113	0.058177642	009981317	0.081448638	0.093084227	0.104719755	0.116355283	0.127990812	013962634	0.151261869	0.162897397	0.174532925	0.186168454	0.197803982	020943951	0.221075039
and Secondary-Touching	Area Replacement Ratio- Mutiphybre inverse of Maximum Appr/Arodal	0	0.157894737	0.210526316	0.263157895	0.315789474	0.368421053	0.421052632	0.473684211	0.526315789	0.578947368	0.631578947	0.684210526	0.736842105	0.789473684	0.842105263	0.894736842	1242368421	1
PVC Pipe Primar	Normalized Groubed Area Agy(Atotal	0	0.043633231	0.058177642	0.07272052	0.087266463	0.101810873	0.116355283	0.130899694	0.14544104	0.159988515	0.174532925	0.189077336	0.203621746	0.218166156	0.232710567	0.24754977	0.261799388	0.276343798
Side B y Si de	lvea Replacement Ratio- Altiphyby the inverse of Maximum Agc/Atotal	0	0.157894737	0.210526316	0.263157895	0.315789474	0.368421053	0.421052632	0.473684211	0.526315789	0.578947368	0.631578947	0.684210526	0.736842105	0.789473684	0.842105263	0.894736842	12163621610	1
PVC	Normalized Grouted Area Agy/Atotal	0	0.087266463	0.116355283	0.14544104	0.174532925	0.203621746	0.232710567	0.261799388	0.29088209	0.31997703	0.34906585	178421876.0	0.407243492	0.436332313	0.465421134	0.494503955	0.523598776	0.552687596
Sats	AreaReplacement Ratio- Multiplyby the inverse of Maximum Agr, Rubital	0	0157894737	0.210526316	0.263157895	0315789474	0.368421053	0.421052632	0473684211	0526315789	856/1468/20	0631578947	0684210526	0.736842105	0.789473684	0.842105263	0.894736842	1216367160	1
	Nomelized Grouted Area App://R.otal	0	0.11111111	0.148148148	0.185185185	0.2222222	0.25925929	0.296296296	0.3333333333	0.37037037	0.407407407	0.4444444	0.481481481	0.518518519	0.55555556	0.5926263	0.62962963	0.66666667	0.703703704
	Normalized Arg. Pore Pressure (J29a)	1	16/55556610	0.982517705	0.981369294	0.922669559	0.822664455	0.85416512	0.815415045	0.771007465	0.716072226	0.707012059	0.662604479	0.64894577	0.609136732	0.545587954	0.487398711	0.386652304	0.355579659
	Normalized Pore Pressure-Gauge 14()/9 a)	1	0.996742047	0.990992718	0.9948501	0.920467612	0.883096972	0.867573783	0.824453814	0.767152166	0.727098505	0.711000383	0.671904944	0.644308164	0.608279034	0.553468762	0.494825604	0.389612878	0.355691836
	Normalized Pore Pressure-Gauge 12()293)	1	0.996558975	0.981647868	0.978971516	194200229.0	0.878417129	0.859873829	0.816096349	0.783215446	0.711718601	0.7063394	0.663735423	0.648633149	0.611164213	0.537755687	0.479831772	0.3825272MI	0.348590499
	Normalized Pore Pressure-Gauge 13(kPa)		0.987366003	0.97492343	0.981283308	0.925555988	0.886485452	0.865811639	0.805704441	0.762633997	CL70941807.0	0.703101072	0.652182236	0.642036753	0.607953047	0.546558959	0.487557427	0.387825421	0.352366003
	Avg. Pore Pressure (IdPa)	5224	5.191	5.133	5127	4800	4611	4.516	4.260	4028	3.741	3.694	3.462	3.370	3.182	280	2546	2020	1888
	Pore Pressue Gauge 14(0°a)	5.218	5.201	5.171	5.139	4.803	4.608	4527	4302	4003	3.794	3.71	3.505	3.362	31M	2888	2582	2.033	1866
	Pore Pressure. Gauge 12(Aa)	5.231	5.213	5.135	5.121	4823	4.995	4.498	4.269	4.097	3.723	3.698	3.472	3.393	3.197	2.813	251	2 001	1824
	Pore Pressure- Gauge 13(JP a)	N225	5.158	5.083	5.121	4855	4631	4523	4.209	3.984	3.705	3.673	3.407	3354	3176	285	2547	2 026	1893
\$0=1:45	# of PVC Ripss	0	m	4	2	9	2		6	10	п	12	13	N.	5	16	11	18	61
		Run 0	Run1	Au2	Run 3	Rund	RunS	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run15	Run 16	Run 17

Figure C.3: Raw Data from S/D=1.45, Unit weight= 12.56 kN/m^3

	geonValue- Gauge 14	94.049559383	93 27 430106	94.03476916	94.19160256	92.62643542	91 53812211	90.32258065	89.82.872784	87.583385527	88.77.850922	87.47.371853	90.04789283	87.99.488065	88.56588157	86.39785472	86.336.61134
	geon Value Lu Gauge 12	93/6623/89	93470560782	935104632	9335482896	9196643535	9302458711	9162303665	2908355806	9027292542	8940292476	8906289351	8980602366	8750885555	8618589905	85.9560532	8591 898826
	aon Value - Iur Sauge 13 - I	3069307.69	93.9190543	93. 70853701	68277006.89	91.4266068	6506251676	80058476	92.26261186	91 83695122	88 53558295	9154091798	1956/505 18	88.6844571	86.85631255	85.62767327	8664545776
	Normalized Average Lugeon Lug Value (1	0.997790682	139168666-0	0.938432388	0.981360338	0.922672025	0.97189782	1189/10/20	0.959433977	0.94200495	0.943310388	0.959107185	0.939158005	0.929931382	0.917148466	18361105.20
	LugeonValue	33.76094461	63 55 37969	93.75078573	93.61396379	92.01389522	92.15500945	1772062771	30.95469425	89.86337777	30PT1405	89.00821057	1995/302/38	88,0600323	87.19124483	85.93270551	18422992.38
	Normalized Flow Loss	1	100533618	0.994841693	0.938794023	0.924048381	0.867129136	0.859124867	0.828886517	0.769832.8	0.728032729	0.691924582	0.683920313	0.648167912	0.616684454	0.550160.085	0.545001779
	How Loss (Qout/Time/length) (L(min/meter)	0.433 859565	0.489130435	0.486347826	0.483391304	0.45173913	0.423913043	0.42	0.405217391	0.376347826	0.355913043	0.338260.87	0.334347826	0.316869565	0.301478261	0.268956522	0.266434783
	Length Interval(m)	046	0.46	046	046	046	046	046	046	046	046	046	046	046	046	046	0.46
	Time (mins)	22	22	22	22	8	22	22	22	22	22	22	8	2	22	22	92
	(Juni (mi.)	5622	5625	5993	5509	5195	4875	4830	4660	4328	4093	3890	3845	3644	3467	3093	3054
yand Secondary-Spaingof PDia. of Pipe	Are a Replacement Retio- Multiply by the inverse of Maximum Agy Anotal	0	0.176470538	0.235294118	0.294117647	0.352941176	0.411764705	0.470588235	0.529411765	0.588235294	0.647058824	0.705882353	0.764705882	0.823529412	0.882352941	179311960	
PVC Pipe-Primar, 0.5	Normalized Grouted Area Agy(Atotal	0	0.034905385	0.046542113	0.058177642	0.06981317	0.081448698	0.093084227	0.104719755	0.116355283	0.127990812	0.1396.2634	0.151261869	0.162897397	0.174532925	0.136163454	0.197803982
yand Secondary-Touching	Area Replacement Ratio- Multiphy by the inverse of Maximum Agd Abotal	0	0176470588	0.235294118	0.294117647	0352941176	0411764705	0.470588235	0529411765	0588235294	0.647058824	0.705882353	0.764705882	0825529412	0882552941	0941176471	-1
PVC Pipe-Primar	Normalized Grouted Area Agd/Atotal	0	0.04953221	0.058177642	0.072722052	0.087266463	0.101810873	0.116355283	0.130899694	0.14544104	0.159988515	0.174532925	0.189077336	0.203621746	0.218166157	0.232710567	0.24755877
: Side By Side	Area Replacement Ratio- Multiply by the inverse of Maximum Agc/Atotial	0	0.176470588	0.255294118	0.29411767	0.352941176	0.411764705	0.470588235	0.529411765	0.588235294	0.647058824	0.705 882353	0.764705882	0.823529412	0.822 352941	0.941176471	1
Md	Normalized Grouted Area Agc/Atotal	0	0.087266463	0.116355283	0.14544104	0.174532925	0.203621746	0.23.2710567	0.261799388	0.290888092.0	0.31997703	0.34906585	0.378154671	0.407249492	0.436332313	0.465421134	0.49.4503355
Slats	Area Replacement Ratio Multiphybre inverse of Maximum Agc(Atobal	0	0.176470588	0.235294118	0.294117647	0.352941176	0.411764705	0.470588.235	0.529411765	0.588235.294	0.647053824	0.705882353	0.764705882	0.823529.412	0.882352941	0.941176471	
	Normalized Groubed Area Age,(Ntotal	0	0.11111111	0.148148148	0.185185185	0.2222222	0.259259299	0.296296295	0.333333333	037037037	0.407407407	0.4554455	0.431431431	0.518518519	0.555555550	0.5929259	062962963
	Normaliae d Avg. Pone Pressure (XPa)	-1	1.002748009	0.9949495	0.990345503	0.941695435	0.882240123	0.833966245	0.85436449	0.833223094	0.767804529	0.728870988	0.713080169	0.690129139	0.663150492	0.593859353	0.592123769
	Norma i zed Pore Pressure-Gauge 14 (kPa)		1.03848558	0.994938076	0.987302309	0.938245479	0.890919584	0.894574836	0.857833782	0.826664102	0.771258176	0.743939977	0.714313197	0.692765499	0.654867257	0.538884136	18868966510
	Normalized Pore Pressure-Gauge 12(189)	1	100382336	099426959	10383658994	962/1062/60	0871152743	0.87631428	0.852800512	079575545	0.761039954	0726056203	1058171170	0.692219461	0.668705792	05 98164787	0592813082
	Normalized Pore Pressure-Gauge 13(APa)	-1	0.999040859	0.995587953	0.9938615	0.947822751	0.884711299	0.881066564	0.842509112	0.786111644	0.77114905	0.716669364	0.713216958	0.68540188	0.665835411	0.602532131	0.583871475
	Avg. Pore Presure (kPa)	5.214	5.228	5.188	5.164	4.910	4600	4.609	4.655	4188	4003	3.800	3.718	3.598	3.458	3128	3.087
	Pore Pressure- Gauge 14(kPa)	5.198	5.244	5172	5.132	4877	4631	465	4511	4297	4009	3.867	3.713	3.601	3.404	3113	3085
	: PorePresure- Gauge 12(/0°a)	5.231	5.233	5.201	5.178	4.912	4557	4584	4,461	4.169	3.981	3.798	3.723	3.621	3.498	3.129	3.101
	Pore Pressure-Gauge 13(APa)	5.213	5208	5.19	5181	4941	4612	4593	4392	4093	402	3735	3718	3573	3471	3141	3075
S(b=162	#of PVC Ripes	0		*7	5	9	2		6	10	п	12	13	M	5	16	11
		Run 0	Run1	Bund	Run 3	Run 4	RunS	Run 6	Run 7	Run 8	Run 9	Run10	Run11	Run12	Run13	Run14	Run15

المنسارات المستشارات

Figure C.4: Raw Data from S/D=1.62, Unit weight=12.56 kN/m^3

www.manaraa.com

		ugeon Value- Gauge 14	33.52.428497	53.06047033	93.02.672715	93 25 302027	91.13.279152	91.00927866	92.1366749	90.35 70561	90.5780699	91724372	91.2418534	90.17459774
		Lugeon Value- L Gauge 12	94 9966555 8	55,20996489	94.46816394	93.436372.65	12 791318 31	91,91635518	92.489613.89	66 560/55 16	912919789	85966494.76	88.47144372	89.84446051
		ugeon Value-	91.8448-4054	94 915 1972	95.69141263	94.0465.8447	94.6603977	33,8331,0415	93.16370754	91 1601 4289	1009106-68	90.81898534	88,7807,8413	90.60264172
		u value Value	1	0.999520563	11000000	0.990962711	0.979585484	989688E L/5 0	0.98 0555902	0.963901524	0.95365322	0.958274854	0.947582673	0.955261808
		Lugeon Value	55(6306)*16	94.385556.88	94.38285437	93.577431.83	92 50307083	667M1616	92.594708.26	91.02202146	90.054890.04	598668Cb T6	89.48101385	91.206165.95
		Normalized Flow Loss	1	100354573	80662.9966.0	0.999143465	0.932612165	0.907962405	0.8963 27363	0.8775 98865	0.8161.02146	0.783082993	0.724951232	0.700556145
		Row loss (Qout/Tme/Length) (L(min/meter)	0.490347826	0.490521739	0.48773913	0.475217391	0.457304348	0.445217391	0.434608696	0.4.20521739	0.400173913	0.385434783	0.355478261	0.343565217
		Length Interval(m)	940	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.46
		Time (mins)	22	52	ю	12	92	52	22	Я	52	22	92	Я
_	of	of Qout (ml.)	6895	5641	6095	5465	5259	5120	4998	4836	4602	4444	4088	3951
	and Secondary-Spacing 'Dia. of Mpe	Are a Replacement Radio Multiphy by the inverse Meximum Agr, Mt otal	0	0.230769231	0.30769208	0.384615385	0.461538462	0.538461538	0.615384615	0.692307692	0.769230769	0.846153846	0.92307652	.1
	PVCPpe-Primary 0.5*	Normalized Grouted Area 1 Agr/Atotal	0	0.034905585	0.046542113	0.058177642	0.06981317	0.081448638	0.093084227	0.104719755	0.116355.283	0.127990812	0.1395.2634	0.151261869
	y and Secondary-Tourdring	Area Replacement Ratio- Multiply by the inverse of Maximum Agr/Atotal	0	0.2 30769231	0307692908	0384615385	0461538462	0538461538	0.615384615	0692307692	076529769	0.846153846	E 2907062 90	1
_	PAC Pipe-Prima	Normalized Grouted Area Agr(Attotal	0	0.0436332.31	0.058177642	0.072723052	0.087266463	0.101810873	0.116355283	0.130899594	0.14544104	0.159988515	0.1745329.25	0.189077336
	Side By Side	Area Replacement Ratio- Multiply by the inverse of Maximum Agd Atotal	0	0 230769231	0.307692338	0.384615385	0.461538462	0.538461538	0.615384615	0.69 Z307632	0.76920769	0.846153845	0.92.3076923	.1
	PICS	Normalized A Grouted Area Agc/Atotal	0	0087266463	0116355283	014544104	0174532925	02036217M6	0232710567	0.261799388	029388099	0.31997703	0.34905555	178454671
	Slats	v ea Replacement Ratio- Autopy by the inverse of Maximum Agc/Atotal	0	0.230769231	0.307692308	0.384615385	0.461538462	0.538461538	0.615 384615	0.692 307692	0.769 297/69	0.846153846	0.923076923	1
		Normalized A Grouted Area N Agc/Atotal	0	0.11111111	0.148148148	0.185185185	0.2222222	0.2592999	0.296296296	D 33 333555	0.37057037	704/04/06/06/0	0.4444444	0.481481481
		lorma Ezed Av.g. Pore Pressure (J2Pa)	1	10083451	0.935185518	0.977981769	0.95204776	0.932 789832	0.90390294	0.889716267	0.85575812	0.813904224	0.76905328	0.733 470279
		Normalized Pore N essure-Gauge 14(1/Pa)	1	1005340454		0.971952617	0.957085638	0.93305.3595	0.899675758	0.88765 9737	0.842647339	0.803547587	0.743086019	0.726683197
		Normalized Pore Pressure-Gauge 12()@a)	1	0.99748.3059	8/121999610	0.984704743	0.964569216	0.948112294	0.909777348	0.839254538	0.858083253	0.815295257	0.777928364	0.740367861
		Normaliaed Pore Pressure-Gauge 13(kPa)	1	0.999613153	1 7008858 0.0	686662260	0.934(294	0.9172147	0.9 0232108 3	0.892263056	0.866731141	804/10628.0	0.774468085	0.733452282
		Avg. Pare Pressure (kPa)	5.193	5.197	5.168	5.078	494	484	4.694	4600	4444	4.226	3.973	3.809
		Pore Pressure- Gauge 14(kPa)	5.243	5271	5.28	5.095	5.018	4892	4717	4664	4.418	4.213	3.896	3.81
		Rore Pressure- Gauge 12 (MPa)	5,165	5.152	5.163	5.085	4.982	4897	4699	4,593	4.482	4211	4.018	3824
		Pore Pressure-Gaugy 13 (kPa)	5.17	5.168	5.097	5.053	4.831	4.M2	4,665	4,613	4,481	4.255	4.004	3.792
	(0=2.17	# of PVC Ripes	0		77	5	9	2	80	6	01	п	13	13
	's		Run 0	Run1	Run2	Run 3	Run4	Runs	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11

Figure C.5: Raw Data from S/D=2.17, Unit weight=12.56 $\rm kN/m^3$

120

	lugeon Value- Gauge 14	92 99290317	93.68961939	90.5036384	89,89672535	88.90604642	89.32170522	86.95652174	87.21436168	88.2269904	86.08283076	82.71897109	88. 7456574A	84.72762935	82 52502402	81.70544786	81,55572068	79.05852767	79.38546002	73.66273322	71.51474207	72 11752486	73.79312268	71.78410795	73.11500381	73.75332742	7285348922
	lugeon Value Gauge 12	93.74922904	93.16530465	174826206	91.97333284	90.61577808	89.55470095	88.60245394	88.48245719	85.5422364	88.04875324	81 59333818	85.00534775	81,98904/73	82.6723375.2	79.63894013	78.70159852	79.41739525	81.07802573	76.35951332	74 7069433	78.9430333	816903544	75.37071435	76.37231504	M 60595704	742257296
	lugeon falue Gauge 13	9417673835	93.52627057	85609022.15	91.24652603	90.10612804	89.32170522	88.4069553	89.08544214	86128228	87.424825	89.72515288	89.31429411	83.95294395	82.05712877	70690066.87	78.35485544	79,70594362	78.46655434	RE20201.28	80.44292461	81.37523023	78.47440536	83.26966522	77.5440549	75.22716577	23,9995590
	Normali zed Average Lugeon Value	1	193810784	0.971002234	0.968652477	0.959772305	095474202	0.939611437	11/2020/01	0.994553039	0.931017293	0.921112409	0.917980776	69/66620610	0.830175495	0.855595602	0.849149425	0.847884042	0.850397529	0.83 861519	0.804991226	0.825361447	0.831265579	0.817152659	172697 080	0.795880545	0.78654699
	Average Luge on Value	33.63705056	N2485824.02	90.9217.9503	307.7107.06	89.8702.4812	1296 2665 68	N055N72618	165852.88	87.5087995	87.1777.2361	86.2005.839	85.95702149	84 55424402	82.4173.2734	8111545717	79.5118561	79.333.6942	39 6287 2496	78.52546135	75.37701.222	77.27505609	77.8372654	76.51577.299	75.6305521	74 52391 484	73,65815818
	Normalized Flow loss	1	0.97 4035088	0313157895	0.85 8245614	0.80 8070175	0.761929825	0.727192982	0.71 2105263	0657894737	062 2280702	0.585614035	0.558245614	0500175439	0.467192982	0.41 2280702	0.394736842	0352882456	0.31 4561404	0307192982	970	N1468/25270	0.23 2105:063	120	1129684211	0182280702	0174912281
	Flow Loss (Qou V Time/Length) (L(min/meter)	0.495652174	0482782609	0.45 2608696	0425391304	0400521739	N12297760	0360434783	035 2996522	0326089957	0308434783	0.29036087	0276695652	0.247913043	0231565217	0.20M 3478256	M12595610	0174956522	0.155913048	0.15226087	0128969565	0126782609	0115049478	0104086957	96010	9782460600	008665652
	Lengh Interval (m)	0.45	0.45	0.45	0.46	0.46	0.45	0.46	0.45	0.45	0.46	0.45	0.45	0.46	0.45	0.45	0.46	0.45	0.45	0.46	0.45	0.45	0.46	0.45	0.45	0.46	0.45
) Tme(mins)	22	9	92	8	29	10	8	29	92	8	9	92	8	9	92	8	89	ю	22	9	92	8	89	ю	8	99
ę of	tio- e of Qout(mi al	2005	2885	2005	4892	400	4948	4145	409	3750	3547	3338	3182	2851	2992	1987	220	2012	179	1751	1482	1458	1323	1197	1104	1039	66
iary and Second ary-Spain 05°Di a. of Pipe	Area Replacement Rei Multiphythe inverse Maximum Agy Abote	0	0.11111111	0.148148148	0.185185185	0.2222222	6526526570	0.296296296	0.33333333	0.37037037	0.407407407	0.4444444	0.481481481	0.513513519	0.55555556	0.59269263	0.62962963	0.66666667	AUTENTER D	14/04/04/0	0.7777778	0.814814815	0.851851852	0.88888899	976576576	0.962962963	
P/CRpe-Prin	Normalized Grouted Arrea Agg(Atott al	0	0.034906585	0.046542113	0.058177642	0.09381317	0.081448638	1033084227	0.104719755	0.116355283	0.127990812	0.13962634	0.151261899	0.162897397	0.174532925	0.136163454	0.197803982	0.20943951	0.221075039	0.232710567	0.244346095	0.255981624	0.267617152	0.27925368	0.29088209	0.302523737	0.314159265
/ and Secondary-Touching	Area Replacement Ratio- Multiphybythe inverse of Maximum Agy/Alotal	0	0.1111111	0.148148148	0.185185185	0.22222222	652652652.0	0.296296296	0.333333333	0.37037037	0.407407407	0.44444444	0.481481481	0.518518519	0.555555566	0.592592593	0.62962963	0.66666667	OLTOSTON DA	0.7407411	0.7777778	0.814814815	0.851851852	0.88888899	0.925925926	0.962962963	1
PVC Pipe-Prima	Normalized Grouted Area Agg(Atostal	0	0.043633231	0.058177642	0.07272052	0.087265463	0.101810873	0.116355283	0.130899694	0.14544104	0.159988515	0.174532925	0.189077336	0.203621746	0.218166156	0.232710567	0.247254977	0.261799388	0.276343798	0738806710	0.305432619	0.31997703	0.33452144	0.34906585	0.353610261	0.378154671	0.392699082
C Side By Side	Area Replacement Ratio- Multiphybythe inverse of Maximum Agc,Nubtal	0	0.11111111	0.148148148	0.185185185	0.22222222	0.2926259	0.29629696	0.3333333333	0.37037037	0.407407407	0.44444444	0.481481481	0.518518519	0.555555556	0.592592593	0.62962963	0.66666667	0.703703704	0.740740741	0.7777778	0.814814815	0.651651552	0.888888899	0.925925926	0.962962963	1
ΡV	Normalized Grouted Area Agy Anntal	0	0.087266463	0.116355283	0.14544104	0.174532925	0.209621746	0.232710567	0.261799388	0.29088209	0.31997703	0.34906585	178451875.0	0.407249492	0.436332313	0.465421134	0.494509955	9/186552510	0.552687596	0.581776417	0.610865238	0.639354059	0.66904288	10/151869-0	0.72720522	0.75630948	0.785398163
Slats	Area Reptacement Ratio- Muticipy by the inverse of Maximum AggAluotal	0	0.1111111	0.143143148	0.185185185	0.222222222	0.2592595.9	0.296296296	0.333333333	0.37037037	0.407407407	0.44444444	0.431431481	0.518518519	0.555555556	0.99299293	0.6295363	0.66666667	0.703705704	0.740740141	0.77777778	0.814814815	0.651651552	0.88888899	0.92592592.6	0.962962963	1
	Normalized Grouted Area Agg/Attotal	0	0.11111111	0.148148148	0.185185185	0.2222222	0.29259299	0.295295295	0.333333333	0.37037037	0.407407407	0.4444444	0.481481481	0.518518519	933333330	86576576510	0.62962963	1999999910	AUTENVEN.ID	1 MUMUM1	0.7777778	0.814814815	0.851851852	0.8888889	0.925525526	0.962962963	-
	Normaliae d Aveange P one Pressure (NP a)	1	0.975881612	0.940428212	0.886020151	0.841939547	0.738047859	17 1922677.10	0.755541562	0.703967254	0.668387909	0.635768262	0.608123425	0.553904282	0.530793451	0.48136398	0.464861461	0.4163038.24	11 3698924	0.366303824	1 3229848877	0.30949622	0.279219144	N7 668869 27 D	0.239798489	0.229030227	0.222355164
	Norma fized Pore Pre sure-Gauge 14(k Pa)	1	0.96791745	0.938273921	0.837804878	0.84521576	0.792245779	0.777673546	0.759287054	0.609433396	0.672232645	0.658348968	0.61988743	0.548968105	0.526454034	0.469230769	0.450033809	0.415196938	0.3684803	0.337804878	0.338085304	0.329831144	153249531	0.272045028	0.246341463	0.229831144	0.2232.6454
	Mormafized Pore Pressure-Gauge 12)/Pa)	1	0.990139966	0.945525764	0.894433516	0.836012862	96/2919/6/10	0.769434462	0.754492151	0.721013807	0.6625685 64	0.634007944	0.615661055	055173066	12006062510	0.484963117	0.4702099.49	0.416682429	0.3637223.38	0.377151504	0.326271988	013055949	0.266502743	0.261206733	0.237752979	0.229052393	0.220919236
	Normalized Pore Pressure-Gauge 13(kPa)	1	0.9338.09424	0.937488125	0.88580657A	0.844575337	1446 6180	0.77465304	0.752802584	0.697510925	0.67034011	0.61466844	0.588637659	0.561086833	0.5361.96086	0.491544746	0.47444233	0.417062512	0.3775.41325	0.33365001	0.304389132	0.296028881	0.2785.48356	0.2375.07125	0 2352 27057	0.2281.96846	0 2228 76696
	- Avg. Pare) Pressure (\$24)	523	5.166	4.978	4690	4467	424	4097	3999	3.726	3538	3365	3.219	2932	2.810	2551	2.461	2.204	1958	1939	1.710	1641	1478	1380	1269	1212	1177
	- Pore Pressure) Gauge 14)69a	5.330	5.153	5.001	4.732	4.905	4.228	4.145	4.047	3,696	3,583	3.509	3.304	2.906	2.806	2.501	2.399	2.213	1964	2.057	1.802	1.758	1539	1/60	1313	125	1.190
	- PorePresure) Gauge 12(1924)	5.287	5182	4999	4676	4420	4217	4058	3389	3812	3503	3352	3255	2917	2801	2564	2486	2203	1923	1994	1725	1606	1409	1381	1257	121	1168
	Pore Pressure Gauge 13(Pa)	5,263	5,162	4.994	4662	446	4.228	4077	3962	367	3528	3255	3.098	2953	2822	2.587	2.497	2.195	1987	1756	1602	1538	1466	120	1238	1201	1173
S/D=1	#of PVC Apes	0		*7	2	9	2		6	10	Ħ	12	đ	И	15	16	1	81	61	8	21	2	23	N	ю	я	17
		Run0	Run1	Run2	Run3	Run4	Run5	Run6	Run 7	Run 8	Run9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17	Run 18	Run 19	Run 20	Run 21	Run 22	Run 23	Run 24	Run 25

Figure C.6: Raw Data from S/D=1, Unit weight=13.03 kN/m^3

	lugeon Value- Gauge 14	93.672.07367	92 941 99276	91117072669	92.76894175	91 327 92803	90,427,75212	88.31775701	89.66096335	90.414.25926	90.478.20057	85.79611387	83.45672365	83.20645125	79.07277755	77.64307778	81.68091686	79.56861413	81.19118523	81.47M14909	81.57376321	76.512.65751	77.64614804
	lugeon Value- Gauge 12	94.242.91853	33.77134905	91 531 37039	93.145 03332	92.99619519	90.99918558	90.021.43367	91.61411094	90.903.99345	90.75512327	86.55798139	86.982.02957	84.078.85489	81.9626361	78 939 47763	6E92EE(E)(8)	75.89963751	78.56517128	15108594865	82.681.81563	80.121.25175	80.405.42628
	LugeonValue- Gauge 13	94.56708.68	94.03842169	92.53801414	93.86826815	93.51262002	89.7N346568	89.61593172	90.38641236	81.88390273	91.54474124	88.95316.84	86 2052938	85.50772931	80.21246755	77.03799535	81 93590121	78.11913794	80.05073638	79.16348122	80.64737347	76.76319011	76.1308444
	Normalized Average Lugeon Value	1	0.993759972	0.974339524	0.990433749	0.983470266	0.959940025	0.948525482	0.961633445	98523005610	0.965638468	0.924835548	0.918477118	0.894800188	0.850421824	0.826955202	0.859920519	0.826611181	0.84878772	0.851201442	0.866891619	0.825885452	0.828605855
	Luge on Value	94.15923737	33.57 168105	50990E N/ 16	93.25.848647	92.60.281027	30.33722055	109071268	90 54 667 195	30.3987865.02	90.92.378174	87.08181932	85,48310494	84.25370329	80/02/07 08	77.86547113	80.96346364	758706 5877	799212046	80.14847859	81.6258537A	77.7647464	78.02098951
	Normalized Flow Loss	1	0.976305432	8209135.6078	0.928307855	0.894730276	0.814795291	0.763837638	0.722368652	0.712177122	0.659110877	0.610513249	0.599191705	0.518538043	0.472324723	0.439455823	0.394482516	0.329291854	0.299420137	0.282024949	0.258302583	0.236865226	0.228606572
	Flow Loss (Oput/Time /Length) (U/min /meter)	0.494959565	0.4833913.04	0.452782509	0.4533913.04	0.437826087	0.403217391	0.378	0.35N78261	0.352434783	0.326173913	0.302173913	0.296521739	0.2566036595	0.23373913	0.217478261	0.195217391	0.162956522	0.148173913	0.139565217	0.127826087	0.117217391	0.113130435
	Lengh Inteval (m)	0.45	0.45	0.45	0.45	0.46	0.46	0.45	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.45
	. Time (mins)	R	ю	ю	R	10	10	R	ю	10	ю	10	10	ю	ю	ю	ю	ю	10	10	10	ю	99
8	r Qout(ml)	1895	6855	2322	288	308	4637	494	4111	4053	3751	3475	3410	2951	2689	1052	2245	187M	1704	1605	1470	1348	1301
ery and Secondary-Spacing : 15*Dia. of Ripe	Area Replacement Radi o Multiphy by the inverse o Maximum Agc/Alotial	0	0.130434783	0.173913043	0.217391304	0.260869565	0.304347826	0.347826087	0.391304348	0.434782609	0.47826087	0.52173913	0.565217391	0.608695652	0.652173913	0.695652174	0.739130435	0.78 2608595	0.82.6089957	0.869565217	0.913043478	0.956521739	1
РУС Кре-Р п	Normalized Grouted Area Agc/Atotial	0	0.034905585	0.046542113	0.058177642	0.09381317	0.081448698	0.093084227	0.104719755	0.116355283	0.127990812	0.13962634	0.151.261869	0.162897397	0.174532925	0136163454	0.197803382	0.20943951	0.221075039	0.232710567	0.244346095	N201865 52:0	0.267617152
ry and Secondary-Touching	Ar ea Replacement Ratio- Multisky by the inverse of Maximum Agc, Octobal	0	0.130434783	0.173913043	0.217391304	0.260899565	0.3043478.26	0.347826087	0.3913043.48	0.434782609	0.47826087	0.52173913	0.5652173.91	0.608695652	0.652173913	0.69565217M	0.739130435	0.782608595	15 6660928 10	0.86955217	0.913043478	0.956521739	1
PVCPipe-Prima	Normalized Grouted Arrea Age,(Noted	0	0.043633231	0.058177642	0.072722052	0.087266463	0.101810873	0.116355283	0.130899694	0.14544104	0.159988515	0.174532925	0.189077336	0.203621746	0.218166156	0.232710567	0.247554977	0.261799388	0.276343798	0.290888.209	0.305432619	0.31997703	0.33452144
rde By Stde	re a Replacement Rotio- Uf Splyby the inverse of Meximum Agy/Alottal	0	0.130434783	0.173913043	0.217391304	0.260869555	0.30434225	0.347826087	0.391304348	0.434782609	0.47826087	0.52173913	0.565217391	0.608995552	0.652173913	0.695652174	0.739130435	0.782608696	0.826086957	0.899565217	0.91304378	0.956521739	1
PVCS	4 domaiized A outed Area N 4g (/ Alotal	0	1087265453	116355283	11/544104	11/632925	1203621746	1232710567	1261799388	1290888099	1.31997703	134906585	1378154671	1407243492	1436332313	1465421134	1494503955	1523598776	9652892551	11581776417	1610865238	1639554059	166904288
Slats	Ves Replacement Ratio- Iulis by the inverse of G Maximum Agc/A00381	0	0.130434783	0.173913043	0.217391304 0	0.2608.69565 (0.30847826 0	0.347826087 0	0.391304348 (0.434782609 (0.47826087	0.52173913	0.565217391 ()	0.608695652 (0.652173913 (0.695652174	0.7391.30435 ()	0.782608596 0	0.826089957 (0.899565217 (0.913043478 (0.956521739 (1
	outed Area N (scRtotal	0	1111111	1431 431 43	1851 85185	2222 2222	587,59269	2962 96296	3333 33333	13 7037037	207407407	4444444	481481481	518518519	95555555	59259293	162952963	199999999	AUT03704	1N/05/00V	8777777	814814815	851851852
	Normalized Avearge Fore Pressure (J2Pa)	1	0.98293905 0	0.959789434 0	0.937274053 0	0.899600431 0	0.848798123 0	0.805289529 0	0.751189193 0	0.741802499 0	0.682554851 0	0.660239741 0	0.652375214 0	0.57950149 0	0.55540052 0	0.531426397 0	0.458742944 (0.338363671 0	0.352762098 0	0.331324919 0	0.297954102 0	0.286801548 0	0.275893687 0
	Normalized Pore Pressure-Gauge 14 (KPa)	1	0.984478516	0.960817717	0.937346205	0.907438955	0.844028014	0.810145751	0.754694838	0.737838349	0.682377437	0.66666667	0.672534545	0.583759228	15065 655 0	0.530191179	0.452394173	0.387658527	0.345447662	0.324247587	0.2965117M	0.28998675	0.275790271
	Normalized Pore Pressure-Gauge 12(18a)	1	0.981717768	0.962854216	0.939249667	0.296591125	0.843839369	8027239 97.0	0.7M 3096553	0.738335555	0.684441059	0.664825747	P1560251670	0.581222624	0.549800038	0.524661969	0.45 2959435	0.4.083745	0.35 9169582	0.33288897M	0.294(2011	0 27 8613597	0.267948962
	Normalized Pore Pressure-Gauge 13(0Pa)	1	0.982610357	0.955665966	0.935218804	0.894705659	0.85858719	0.806038601	0.755780623	0.74928339.4	0.680871393	0.649149527	0.635199594	0.573476018	0.556850755	0.539461112	0.450921078	0.338624116	0.353716797	0.3369.0044	0.302885534	0.291802026	0.283967132
	Avg. Pore Pressure (IPa)	5.26	5.166	5.044	4.926	4.728	4.451	4.222	3.948	3.899	3.587	3.470	3.429	3.045	2.919	2.793	2.411	2.094	1854	1M1	1566	1.507	1.450
	Pore Pressure - Gauge 14(169)	5.283	5.201	5.076	4.952	4.794	4.489	4.280	3.987	3.898	3.605	3522	3.553	3.084	2.956	2.801	2.390	2.048	1825	1.713	1.567	1532	1467
	Pore Pressure- Gauge 12(97a)	5.251	5.155	5.056	4.922	4.708	4.431	4.199	3.902	3.877	3.594	3.491	3.409	3.052	2.887	2755	2.481	2.147	18%	1.748	1546	1.463	1.407
	Pore Pressure- Gauge 13(0°a)	5.233	5.142	5.001	4.894	4.682	4.483	4.218	3.955	3.921	3.563	3.397	3.324	3.001	2.914	2.823	2.412	2.095	1851	1.763	1.585	1527	1.485
S/D=1.18	#of PVC Fipes	0		4	5	9	~		6	10	п	12	13	M	5	<u>1</u> 6	17	18	19	20	21	a	23
		Run0	Runt	Run2	Run3	Run4	Runs	Bun6	Run7	Bun8	Run9	Bun 10	Run 11	Run 12	Run 13	Bun 14	Run 15	Run 16	Run 17	Aun 18	Run 19	Run 20	Run 21

Figure C.7: Raw Data from S/D=1.18, Unit weight=13.03 $\rm kN/m^3$

122

	ugeon Value - Gauge 14	92.09326451	92.287955.45	828 6016 76	91.9.4808771	91.63865584	89.36401937	86.37642486	87.342003.29	86.9.35077.47	87.40440493	84.60252819	8553580579	83.87646784	8) 38422249	79.65991466	82.14916932	77 80973863	81.01712218
	Ugeon Value- Gauge 12	92.61004173	92 683 58905	92.05456095	92.9601239	91.05527199	90.41699693	88.46157654	89.47127775	87.77931751	88.052.09246	84.48816954	86.45737554	83.218 50938	82 069 95978	81.5948528	82.45081865	75.09336742	81,97952859
	Lugeon Value- Gauge 13	92.77160218	53.11905322	92 58 100195	94 12 801198	91.44705342	90.17641955	87.64322712	91.05 239383	88.43997499	88.89243173	87.49.238822	86.95.652174	83.45.418229	81.13541573	80.95952034	80.80246162	78.36925257	75.76152044
	Normalized Average Lugeon Value	1	1.02215356	0.995652144	100554677	0.933027422	0.97289264	0.965881947	0.951608258	0.948352279	0.952694834	0.924473881	0.995843998	0.912960771	0.879655877	0.872844577	0.884353547	0.833.20695.6	0.859438543
	an pa ou Argi na	92.49072954	92.09562558	92.18108401	93.00355161	91.38337719	89.98355015	87.4853114	88.93 934939	87.71379426	88.11544033	85.50526378	86.64934791	83.51550057	81.35031204	80.73003183	81.7945048	77.05391933	79.49009788
	Normalized Flow loss	1	0.993822674	0.980922965	0.97056686	0.9133333814	0.84974554	0.81159157	0.78215343	0.736555233	0.70912054	0.652979651	61.552.67.62.0	0.554142442	0.49127907	0.456213563	0.42 22383 72	0.341569767	0.317223837
	FlowLoss (Oput/Time/length) (L/min/meter)	0.478608695	0.475652174	0.469478.261	0.464521739	0.437391.304	0.406695652	0.335434783	0.374347826	0.352521739	0.339391.304	0.312521739	0.286173913	0.265217391	0.235130435	0.218347826	0.2020365957	0.163478.261	0.151826087
	Length Interval (m)	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
	Time (mins)	22	25	25	25	25	22	25	25	25	25	22	25	25	25	25	25	25	25
	Quut(mL)	1055	840	6665	590	0805	4677	1945	4935	4354	303	394	3291	(60E	2704	2511	2324	1831	1745
y and Secondary-Spacing of 1*Dia. of Pipe	AreaRepacementBatio- Multiply by the inverse of Naximum Agr,Quotal	0	0.157894737	0.210536316	0.263157895	0.315789474	0.368421053	0.421052632	0.473694211	0.526315789	0.578947358	0.63 1578947	0.684210526	0.736842105	0.789473684	0.842005263	0.894736842	0.947368421	1
PVCRpe-Primar 05	Normalized Grouted Area Agr/Atotal	0	0.034905585	0.046542113	0.058177642	0.09381317	0.081448698	0.093084227	0.104719755	0.116355283	0.127990812	0.13962634	0.151261869	0.162897397	0.174532925	0.186168454	0.197803982	0.20943951	0.221075039
ry and Secondary-Touching	Are a Replacement Ratio- Multiplyby the inverse of Meximum Agr/Atotal	0	0.157894737	0.2105.26316	0.263157895	0.315789474	0.368421053	0.421052632	0.473584211	0.526315789	0.5789.47358	0.631578947	0.6842 10526	0.736842105	0.789473684	0.8421.05263	0.894736942	0.947368421	1
PVC Rpe-Prima	Normalized Grouted Area Agc/Atotal	0	0.043633231	0.058177642	0.072723052	0.087265453	0.101810873	0.116355283	0.130899594	0.14544104	0.159988515	0.174532925	0.189077336	0.203621746	0.218166156	0.232710567	0.297254977	0.261799388	0.276343798
CSIde By Side	Area Replacement Ratio Multiply bythe inverse of Maximum Agc/Alotal	0	0.157894737	0.210526316	0.263157895	0.315789474	0.35842 1053	0.42105 2632	0.473684211	0.526315789	0.578947368	0.631578947	0.684210526	0.736842105	0.789473684	0.842105263	0.894736942	0.947368421	1
0d	Normalized Grouted Area Agr/Artotal	0	0.087266453	0.116355283	0.145444104	0.17453.2925	0.203621746	0.232710567	0.261799388	0.29388209	0.31997703	0.34806585	0.378154571	0.477243492	0.406332313	0.465421134	0.494509955	0.523598776	0.552687596
Slats	Area Replacement Radio- Multigly by the inverse of Maximum Agc, A total	0	0.157894737	0.2 10526316	0.263157895	0.315789474	0.368421053	0.421052632	0.473684211	0.5.26315.789	0.578947358	0.631578947	0.684210526	0.7 36842 105	0.789473684	0.842105.263	0.894735842	0.947368421	1
	Normalized Grouted Area Agc/Atotal	0	0.1111111	0.143143143	0.185185185	022222220	0.299299299	0.296295295	0.333333333	0.37037037	0.407407407	0.44444444	0,481,481,481	0.518518519	0.555555556	0.592992593	0.62952953	19999999990	0.703703704
	Noma Ezed Ave age Pore Pressure (KPa)	1	0.99162587	0.984217985	0.9652151.51	0.924854909	0.873421799	0.8 590362 82	0.813385725	0.776663384	0.74831358	0.705325689	0.638237568	10.613694924	0.55849008	0.5 226745 68	0.477454264	0.40994339	0.3691059.01
	Normalized Pore Pressure-Gauge 14(/Pa)	1	96657216610	0.982874735	0.972099288	0.91841447	0.875697518	0.865 305908	0.824 705561	0.780257841	0.747161824	0.710794689	0.636328651	0.608427939	0.55936117	0.527419665	0.47335001	0.404271695	0.36059265
	Nomalized Pore Pressure- Gauge 12(k Pa)	1	0.9330.34056	0.986842105	994116996-0	0.926373055	1809580/810	0.849651703	0.809597523	0.777089783	0.745743034	0.71579074	0.640473876	19562 991910	0.554373055	0.5178.01858	0.4742.64705	0.42124613	0.358359133
	Nomalized Pore Pressure-Gauge 13()@a)	1	0.990114363	0.982942431	0.95650733	0.927117658	0.874200426	0.859081217	0.805776313	0.772630355	0.740065904	0.6923822.45	0.6379143.24	0.616010855	0.561736771	0.522775732	0.484783873	0.404341927	0.388477374
	Avg. Pore Pressure (k Paj	5175	5.131	5.093	4.995	4.785	4500	4.440	4.209	4.019	3.852	3.655	3.303	3.176	2.890	2,705	2.471	2.121	1.910
	Pore Pressure- Gauge 14(kPa)	5.197	5.154	5.108	5.052	4.773	4551	4.487	426	4055	3.883	3.694	3.307	3.162	2.977	2.M1	2.45	2.101	1.874
	Pore Pressure- Gauge 12(Pra)	5.168	5.132	5.1	4.997	4.833	4.488	4.391	4.184	4016	3.854	3.699	331	3.187	2865	2676	2451	2.177	1852
	one Pressure - 1 Lauge 13(kPa) 1	5.159	5.108	5.071	4935	4.783	451	4.422	4.157	3.985	3.818	3572	3.291	3.178	2.838	2.697	2.501	2.086	2.004
\$/D=1.45	a of PVC Pipes 6	0	e	*7	5	9	7		6	10	п	12	g	M	5	16	17	81	19
s		Run 0	Run 1	Run2	Run 3	Run 4	Run S	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17

Figure C.8: Raw Data from S/D=1.45, Unit weight=13.03 $\rm kN/m^3$

.

	Value- e M	21249	54487	39356	59239	52334	41966	3123	31716	13565	90053	10506	45751	25144	92185	08504	17633
	lue- Lugeon -	74 92.568.	74 92.472	32 138	.63 31.049.	72 92.953:	11 91.682.	79 89.52).	26 88.165	21 85.226.	129728 85,	49 87.330	W05 88 20.	45 85.230.	75 85.1615	1886 58 10.	VL6618 M
	e- Lugeon Va Gauge I	92.93.7570	1 93.331090	1 92.55446	1 91.558240	5 92.097772	92.659351	1 90.920351	90.666035	35003555	5 88.410936	36.906345	88666956	1 86.031735	1 84.92.2926	36.175565	1 83.17580.
	Lugeon Value Gauge 13	93 523 98371	93.548.22395	93.67441304	92.439.80033	92.13547136	91.59482287	90.543 33593	91.141.70105	89,159,28043	87.56766195	85.44253568	86.80284305	84.21488245	83.59356233	85.083.08352	83.421,70378
	Normalized Awrage Lugeon Value	1	1.001147253	0.997812516	0.985743595	0.99339465	0.98 8905 393	0.971166326	0.957353899	0.9433331044	0.944110882	0.930583342	0.947420233	0.915715311	15000160610	0.921760733	0.887201267
	Eugeon Value	93.0382.5913	93.11/896317	92.80480508	91.6822.9573	9.2.3339.0703	91.97646205	90.32648327	89.97190214	87.78956285	87.8101.0954	86.552M9466	88.11790556	85.16908697	84 5538 1127	85.73136112	82.51704535
	Normalized Flow loss	1	0.985488389	0.974222222	0.953056567	0.920355555	0.87946667	0.848177778	0.816888389	0.755 5555 56	0.713.244444	0.622.044444	0.602 4888 89	0.57884444	0.5568	0.510044444	0.46151111
	FlowLoss (Qout/Time/Length) (L/min/meter)	0.489130435	0.432521739	0.476521739	0.466173913	0.450173913	0.430173913	0.414869565	0.399565217	0.399565217	0.348869565	0.30426087	0.294695652	0.283130435	0.272347826	0.249478261	0.2.2573913
	Longth Interval (m)	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	Time (mins)	8	12	19	22	22	22	22	19	22	12	22	22	22	19	ю	12
	Qut(ml)	5255	5549	C68-5	5361	5177	4947	4771	4895	423)	4012	3499	3389	3256	3132	5962	2396
yard Secondary-Spacing of PDIa. of Ripe	Ar os Replacom ent Ratio- Multiply by the inverse of Maximum Agc/Abbal	0	0.176470588	0.235294118	0.29411767	0.352941176	0.411764705	0.470588235	0.529411765	0.588235294	0.647058824	0, 70588 2353	0.764705882	0.823529412	0.83235 2941	0.941176471	
PVC Ripe-Primar 0.5	Normalized Grouted Area Agc/Anotal	0	0.034905585	0.046542113	0.058177642	0.06981317	0.081449598	0.093354227	0.104719755	0.116355283	0.127990812	0.13952634	0.151261869	0.162897397	0.1745329.25	0.136169454	0.197803982
and Secondary-Touching	Area Repla or ment Batio- Aukipiy by the inverse of Maximum Agc(Atotal	0	0.17600588	0.235294118	0.294117647	0.352941176	0.411764705	0.470588235	0.529411765	0.538235294	0.6470588.24	0.705882353	0.764705382	0.823529412	0.832352941	0.941176471	
Pric Pipe-Primary	Normalized Grouted Area Agr/Mtotal	0	0.043633231	0.058177642	0.072722052	0.087266463	0.101810873	0.11635528.3	0.133899694	0.145444104	0.159988515	0.174532925	0.189077336	0.203521746	0.218166157	0.232710567	0.247254977
≅de 8γSide	v os Roplacement Radio- Autophybythe inverse of Madmun Agd/Atdal	0	0.176470538	0.235294118	0.294117647	0.352941176	0.411764706	0.470588235	0.529411765	0.5882.3529.4	0.647058824	0.705382353	0.76470588.2	0.8235.2941.2	0.832352941	1793113671	
PVC	Normalized Grouted Area Agc/Atotal	0	0.087265453	0.116355283	0.14544104	0.174532925	0.203521745	0.232710567	0.261799338	0.293883.209	0.31997703	0.34906585	0.378154671	0.407243.492	0.435332313	0.465421134	0.494509955
Slats	Area Replacement Ratio- Multiply by the Inverse of Maximum Agc/Abotal	0	0.176470588	0.235294118	0.294117647	0.352941176	0.411764705	0.470588255	0.5 29411765	0583235294	0.647053824	0.705882353	0.764705882	0.823529412	0.882352941	0.941176471	
	Normalized Grouted Area Agc(A total	0	0.11111111	0.143143148	0.185185185	0 222 2222 2	0.239.23925.9	0.295295296	0.333333333	0.37037037	0.4074307407	0.451455514	0.431.431.431	0.518518519	0.555555556	0.99299293	0.62952963
	Normalized Aveage Pore Pressure (APa)	1	0.985558433	0.976357989	0.966830479	0.926475249	0.889332573	0.873359954	0.84467121	0.800469037	0.755465819	0.669441402	0.635925715	0.63212271	0.612473854	0.553337136	0.520187615
	Normalized Pore Pressure-Gauge 14(4Pa)	1	0.987509453	0.978235185	0.968952907	0.9165405	0.887963664	0.876387131	0.857683573	0.811127933	0.754820515	0.653348978	0.627176382	0.623311885	0.605223316	0.549394338	0.527441332
	Normalized Pore Pressure-Gauge 12/0°a)	1	0.98232947	0.978149344	0.96731902	0.928747852	0.88200545	0.86699601	0.837355121	0.797643929	0.749762493	0.665309356	0.631578947	0.625308759	0.609 34828	0.550056502	0.51567547
	Normalized Pore Pressure-Gauge 13(6°a)	1	0.98523327	192252744	0.964244742	0.934225621	0.8 9808 7954	30990978.0	0.833240318	0.792543021	0.761759082	0.630879541	0.649139579	0.642829828	0.622944551	0.560511855	0.517399618
	Avg. Pore Pressure (KPa)	523	5.182	5.135	5.085	4872	4677	4.533	4.441	4.210	3.973	3.515	3344	3324	3.221	2.910	2.735
	Pore Pressure- Gauge 14(6Pa)	5.284	5.218	5.169	5.12	4.843	4.692	4634	4532	4.236	3.989	3.484	3.314	3.32	3.198	2.903	2.787
	on Presure-	5.263	5.17	5.148	5.091	4.838	4.642	4.563	4.407	4.198	3.946	3.901	3.32.4	3.291	3.207	2.895	2.714
	on Presure - P	5.23	5.158	5.087	5.043	4886	4.697	4582	4384	4.145	3.98.4	3.561	3.395	3.362	3.258	2.932	2,706
5	# of PVC Pipes	0	3	4	5	9	2	80	6	10	11	12	13	14	15	16	17
0.1			-	-													

المنسارات

Figure C.9: Raw Data from S/D=1.62, Unit weight=13.03 $\rm kN/m^3$

	di.											
	Lugeon Valu Gauge 1A	93.97610355	93.65187487	93.6519.0577	93.327.1354	21003757535	91.58567221	88,59505392	85.80303751	89.6347.6533	92 91838113	91.9029139
	ugeon Value- Gauge 12	94.53537773	94.66471863	94 3220132 3	94 (0953963 3	C/6196036	91.80400636	91.31613055	91285M216	90.05978668	89.9916103.2	89.78395815
	geon Value - Lu Gauge 13	11/262/616	94 92 136 1 94	95.672.6423	9467151282	// 79276936	93.48739487	65 540 79 59	92.9406736	90.03731667	87.7748228	148066618
	malized Average Luggaon Uu Value	1	0.999115375	1.000511773	0.995282197	1997/90.950	0.976628936	0.964129404	0.951742802	0.951500543	0.9543.4818	0.95251099
	Ugeon Value Non	9050E 8/16	755224 (4) 40 94 55 7	94.54140927	1/05/2011	19/161 te/ 66	92.2846404	91.10.352822	94080665668	89.91.019813	30.17927055	90.00566884
	alized Flow Loss	1	1995408794	1990464418	1975101536	1940011007	0.85943846	1821119548	0.74371976	17328 27123	1644004944	1616310373
	FlowLoss Jud/Time/Length) Nom (U/min/meter)	0.482494783	0.490173913	0.48773913	0.480173913	100 L10000 U	0.423217.391	0.404347825	0.369695.652	0.360869565	0.317130435	£1857505.0
	length (0.	0.46	0.45	0.45	0.46	610	970	0.46	0.45	0.45	0.46	0.45
	ne (mins) ht	52	ю	ю	10	Q 8	а ю	10	ю	12	R	19
	Qout(ml) Tr	8995	2637	6095	<u>7</u>	88		4690	4240	4150	3647	3483
ia of Pipe	reaReplacementRatio- uttiplybythe inverse of Maximum Agc,04.05a1	0	0.230769231	806 239406 0	0.394615385	10 C2010/02	0.615384615	0.692307692	0.765297.09	0.846153846	0.923076923	-1
8 r1Unpermarya 0.5*0	 Normalized Ar Grouted Area M Agc/Abstal 	0	0.034905585	0.046542113	0.058177642	/1519540.0	0.093084277	0.104719755	0.116355283	0.127990812	0.13962634	0.151261869
ay and Secondary-Touchin	Area Replacement Ratio Multiply by the inverse o Maximum Agy Abotal	0	0.2 30769231	0.307692938	0.384615385	2/06/05/CI/01/U	0.615394615	269/062290	0.769230769	0.846153846	5269Y062 60	
PVCPipe-Prim	Normalized Grouped Area Agr(Nt otal	0	0.043633231	0.058177642	0.072722052	0.1010100000	0.116355283	0.130899694	0.145444104	0.159988515	0.174532925	0.189077336
ide By Side	rea Replacement Ratio- ul tipy by the inverse of Maximum Agc/Abstal	0	0.230769231	0.377692308	0.394515385	20492 CI10-11	0.615384615	0.692307692	0.7692 30769	0.846153846	0.923076523	
PACS	amelized A auted Area N g (Abbtal	0	387265453	116355283	M544104	21625041	232710567	961799388	600388062	31997703	38550876	178154671
58	aReplazementRation Nu ipitybythe inverse of Gro soimum Agr(At otal A	0	0.230769231 01	0.307692308 0.	0.394515385 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.615384615 0.	0.692307692 0.	0.769230769 0.	0.845153845 0	0.923076923 0	1
S	malized Are uted Area Mu pc/Abotal h	0	1111111	48148148	85185185	7777777	96296296	EEEEEEE	LEOLEOLE	TOP/OP/O	1444444	81481481
	000 (10) (10) (10) (10) (10) (10) (10) (1	0.99520037 0.11	0.9 89957784 0.14	31.0 67323579 0.15	7.0 06270-00.0	088005117 0.2	0.851669438 0.32	0.785682871 0.3	0.770180376 0.40	0674811309 0.44	0.647563004 0.48
	NomalizedPore N essure-Gauge 14)/Pa) P	1	0.9388549.62	0.9 9389313	1/1/6218/60	1971/10610	0.8818702.29	0.870992366	0.820038168	0.768320511	0.651335878	0.637725191
	Normalized Pore Pressure-Gauge 12)/Pa)	1	0.994048762	0.992704934	0.979650605	/SUIT 60166-11	61/90058810	0.850057191	0.774620849	0.7692M5537	0.676521405	0.64945287
	Normalized Pore Pressure-Gauge 13(XPa)	1	0.995949855	0.983220829	0.978206365	10985/0610	0.873095488	0.833751205	0.76509161	0.772999035	0.696817743	0.66 263081
	Avg. Pore Pressure (KPa)	5.211	5.192	5.159	5105	4383	45%	4433	4.100	4.014	3.517	3375
	Pore Pressure- Gauge 14(/2-a)	5.24	5.234	5.208	5.142	436/	4621	4.564	4297	4.026	3.413	3.305
	Pore Pressure- Gauge 12(189)	5,209	5.178	5.171	S 103	2005	461	4428	4035	4007	3524	3.383
	Pore Pressure- Gauge 13(/Pa)	5.185	S.164	5.038	202	4.961	4527	4323	3.967	403	3.613	3.436
672	of PVCPipes		9	4	5	0		6	10	11	12	13
ų,		Run0	Run1	Run2	Run3	Muna	Run 6	Run 7	Run 8	Run9	Run 10	Run 11
	Stac PCStat Provide-Transfer Provide-Trans Fransfer Provide-Transfer Provi	Opc.// PCG.04 PCG.04/364 PCG.04/364	Opc.17 Opc.16 Opc.16<	Opc.1 260. PCG # File PCG # File	Quart File Sint Sint <t< td=""><td>Place Place <th< td=""><td></td><td>Protect Total Protect Protect</td><td>Protect Protect <t< td=""><td>Protect Field Protect Protect</td><td>Protect File Protection Protection</td><td>Protect Protect <t< td=""></t<></td></t<></td></th<></td></t<>	Place Place <th< td=""><td></td><td>Protect Total Protect Protect</td><td>Protect Protect <t< td=""><td>Protect Field Protect Protect</td><td>Protect File Protection Protection</td><td>Protect Protect <t< td=""></t<></td></t<></td></th<>		Protect Total Protect Protect	Protect Protect <t< td=""><td>Protect Field Protect Protect</td><td>Protect File Protection Protection</td><td>Protect Protect <t< td=""></t<></td></t<>	Protect Field Protect Protect	Protect File Protection Protection	Protect Protect <t< td=""></t<>

Figure C.10: Raw Data from S/D=2.17, Unit weight=13.03 $\rm kN/m^3$

www.manaraa.com

\$/b=1	# of PVC Filpes Pone Pressure. Pone Pre	0 5209 5.2	3 5.128 5.1	4 4915 5.0	5 4.783 4.8	6 45% 45	7 4.28 43	8 41M 40	9 3.682 3.7	10 3.505 3.6	11 3.24 33	12 3.099 3.1	13 2.953 2.9	14 2.778 2.8	15 2.655 2.7	16 2.481 2.9	17 2.207 2.1	18 2.17 2.1	19 1.854 1.8	20 1666 17	21 1538 1.6	22 1.420 1.4	23 1355 13	24 L261 L3	5 127 12	26 1150 12	27 103 11
	essure- Pore Pressure- 12)/Pa) Gauge 14)/Pa)	66 5.318	40 5.192	13 4.94	53 4.87	18 4.995	52 4339	97 4.180	49 3.812	3626	13 3.375	67 3.243	68 3.089	05 2.905	43 2.862	99 2.577	81 2.278	58 2.193	37 1.916	28 1.823	35 1.630	59 T.S.M	131 131	74 L419	70 1.302	04 1.221	16 1.148
	Avg. Pore Pressure (APa)	5.264	5.153	4.951	4.841	458	4336	4.19)	3.748	3.581	3314	3.170	303	2.830	2.753	2552	222	2.156	1872	1739	1624	1.468	1378	1351	1266	1192	117
	Norma Eze d'Pore Pressure - Gauge 13(0Pa)	1	0.98444999	0.943559224	0.91821.8468	0.878479555	0.825110386	0.801305433	0.706853523	0.673055848	0.62468304	0.59483 1848	0.566903436	0.533307737	0.509694759	0.476291035	0.423689768	0.405411979	0.357842196	0.319831062	0.299097715	0.272605107	0.26012.6704	0.242081014	0.23555 3949	0.220771741	0.209829142
	Normalized Pore Pressure-Gauge 12(6Pa)	1	0.97625831	0.950237417	0.921747388	0.858119.658	0.826590693	0.778157645	0.712050779	0.685660.019	0.629249763	0.601519468	0.563722.697	0.532763533	0.520987654	0.483637227	0.414245014	0.403876543	0.348907882	0.328205128	0.310541311	0.27711301	0.263437797	0.260938661	0.241215575	0.228679952	0.211965812
	Normalized Pore 1 hessure-Gauge 14(/23)	1	0.976306882	0.927792403	0.918954494	0.854045534	0.819669049	0.786009778	0.716810831	0.681835276	0.634637082	0.60381572	0.530857465	0.546446032	0.538172245	0.484 580569	0.428356525	0.412373073	228582090	0.342738044	0.315908236	0.2865739	0.261564438	0.266829635	0.244828833	0.22959769	0.214930425
	Nomaized Average Pore Pressure (KPa)	1	0.978976697	0.94047619	0.919642857	7061 586683 1307	0.82377153	0.789437183	0.711942756	0.680217832	0.629559271	0.602140324	0.57054.2047	0.53755 0659	0.523049545	0.484855755	0.422112462	0.409574468	0.355686424	0.330357143	0.308573961	0.27881.2057	0.261714792	0.256712259	0.240564843	0.226330445	0.212259372
S	Normalized Ar Grouted Area Mu Agc/Anotal In	0	0.1111111	0.148148148	0.185185185	0.2222222	0.2592939	0.296295295	0.33333333	0.37037037	0.407407407	0.41433554	0.481481481	0.518518519	0.55 5555556	66576576570	0.62952963	0.66666667	0.703703704	0.740740741	0.7777778	0.81.481.4815	0.85 185 1852	0.83 8888899	0.925925926	0.95295263	
slats	ea Replacement Ratio- 10ply by the inverse of 6 Aakimum Agc,Rtotal	0	0.11111111	0148148148	0185185185	022222222	0259259259	0296296295	· 03 33333 33	0.37037037	0407407	04444444	0481481481	0518518519	0555555556	059292593	0.62962963	066666667	0703703704	0.740740741	. 87.1111750	0.814814815	0.851851852	13 33333 39	92 652 652 6 0	0962962963	1
PACS	Normalized A Souted Area M Agc/Atotal I	0	0.087266463	0.116355283	0.14544104	20025V110	0.203621746	0.232710567	0.261799388	0.290888099	0.31997703	0.34905585	12945182610	0.407243482	0.436332313	0.465421134	0.494509955	9//86562510	0.552.687596	0.581776417	0.610855238	0.639554059	0.65904288	0.698131701	0.72720522	0.75630948	0.785 338163
de By Side	rea Replacement Ratio- bibipty by the inverse of (Maximum Agy Atotal	0	0.1111111	0.143143148	0.185185185	0.22222222	0.259259259	0.296296296	· 0.33335333	0.37037037	0.407407407	0.444444444	0.481481481	0.518518519	0.555555566	0.59269293	0.62952953	0.66666667	0.703703704	0.740740141	. 87.777777.0	0.814314315	0.851851852	0.8 888888 89	0.925925926	0.962962963	1
РУС Яре-Ритауа	Normalized A Grouted Area M Agc/Atotral	0	0.043633231	0.058177642	0.072723052	0.087366463	0.101810873	0.116355283	0.130899694	0.145444104	0.159988515	205252M1.0	0.189077396	0.203621746	0.218166156	0.232710567	0.247254977	0.261799388	0.276343798	0.29088809	0.305430619	0.31997703	0.33452144	0.34905585	0.363610361	0.378154671	0.392699082
nd Secondary-Touching	rea Replacement Ratio- ultiphy by the inverse of (Maximum Agy Atostal	0	0.1111111	0.148148148	0.185185185	0.22.222222	0.25929399	0.296296296	0.33333333	0.37037037	. 70P/0P/0P/0P/0	0.4444444	0.481481481	0.518518519	0.55555556	. 59265265	0.62952963	0.66666667	0.703703704	0.740740741	0.7777778	0.814814815	0.851851852	0.83 8888899	0.925925926	0.962962963	1
PVC Pipe-Primary and 0.5*Dia	Normalized Are. Brouted Area Muli Agc/Atotial M	0	0.0349.05585	0.046542113	0.058177642	0.05981317	0.081449598	1033084227	0.1047 19755	0.116355283	0.127990812	0.13962634	0.1512.61899	0.162897397	0.174532925	0.186168454	0.197803982	0.20943551	0.221075039	19501 1022 0	0.2443 46095	0.255981624	0.067617152	0.27925368	0.290888099	0.305/23737	0.3141 59265
Secondary-Spaingof of Pipe	a Replacement Ratio Joy by theinverse of Qu admum Ag (Abotal	0	0.11111111	0.143143143	0.185185185	0.222,22222	626526526520	0.29529526	0.33333333	0.37037037	0.407407407	0.484448846	0.431431431	0.518518519	0.555 555556	0.592592593	0.62952963	0.666666667	0.703703704	0.740740741	0.777.777.08	0.814814815	0.851851852	0.838 888899	0.925925926	0.952952953	1
	out(mi) Time :	2 1995	5647 2	2 9065	5125 2	462 2	461 2	4104 2	3627 2	3395	3151 2	3056	2796	2588	Z11 2	2063	1986	1902 2	1639 2	1621 2	1476 2	1066	1181 2	1158 2	1087 2	1040 2	.1
	(mins) length interval	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45	5 0.45
	RowLas //mms/lu (U/min,me	0.4907826	0.4823475	0.4513045	0.465621	0.4053915	0.3879136	0.3568695	936660	0.2952175	0.274	0.2691304	0.2431304	0.2206956	0.2183475	0.1957826	0.1726956	0.1653915	0.1425217	0.1409565	0.1283475	0.1100865	0.1026956	0.1006956	0.0945217	1000001	300653003
	ngth) Normalized FlowL 2r)	9 1	1032313607	8 0.93936215	4 0.90804394	M 0.826009922	0.790396882	6 0.72714387	2 0.62491141	11 0.601523742	0.558291991	5 0.54836995	0.49539338	2 0.49681077	902 1084480 230	9 0.40056768	2 0.351878101	M 0.336995039	9 0.29336802	2 0.287207654	0.261516665	100506552.0 52	2 0.20924376	2 0.205173636	0.192593905	0.13456478	0.169737755
	Average Luge Value	51552.59	61665'86	93.1302.4	32.0578.7	88.84315	89:45646	85.98579	81,83642	82.41%0	82.67954	84,90811	81,9555.2	77.99551	80000 52	77.09910	7.72081	76.71210	76.11985	81.05607	73.01569	75.00814	71895 M	K7212.M	74.64206	75.88932	74.55639
	on Normálized Aver Lugeon Value	1	05 1003919307	685256660 10	21 0.937387585	89 0.95290348	10,999465510	161000000000000000000000000000000000000	69 0.877755136	03 0.834310457	0.896798142	0.910701257	0.86225416	81 0.836537115	64 0.85058319	27 0.826943879	66 0.8336122.05	10.822793082	55 0.8164407.25	0.86936531	0.84750721	62 0.804516861	MS 0.7995.2974	dis 0.7992.3583	0800590405	05 0.813958172	12 0799571521
	age Lugeon Value Gauge 13	94 21 82005	94.051588	33.856428	93.174194	88.590757X	91.254314	85.498218	83.29594	1171602.18	84.2040562	361 84 42835	82 33 3957	79.44.40795	82 M0235	294512342	28.249095	78.12530	76.4601602	84.6077561	82.37965	77.526025	75.7901493	79.85 3030	77.034832	1468 597 82	76.216237
	Lugeon Value - Gauge 12	93.21607033	53.841.93951	92.20554624	61 830 24365	89.72804434	89,13443055	8260501.78	81.87732253	8177767072	82.704/9743	84.979.61313	81,917,25239	78.67937689	79.60183233	75.71473978	79.18185711	76.641.01221	77.58396251	81.57206119	N601005 87	75.45370564	TA0415661	73.2855035	N4265624	75,1119,4569	N6547295
	lugeon Value- Gauge M	92.2870644	92 9021 2367	93.49500361	91.19135951	88.22444055	88.9912.9238	85.37549407	80.45531274	81.4168.2055	81,1851,8519	82 9881 0817	28,708,4606	75.9448.2181	76.29204266	76.3611.2095	75.81020728	75.41783144	7N 385 0413	77.32118581	76.39751553	72,2355,3578	73.82865002	70.96240463	72 5973 4188	7A 0661 6102	72 88219407

Figure C.11: Raw Data from S/D=1, Unit weight=13.35 kN/m^3

	eon Value- Sauge 14	92 14012 122	93.40393192	92 N125544	90.25731538	3862 6666 16	88.8538.0445	87.278.285	84.35303306	87.63453342	28 70511 692	80.76536.007	78.49910131	76.7697 1816	29,10857975	78.50971733	78.28172.245	73.65122.967	77.91548151	78.69383278	77.57719581	76.2632.1974	76 13231 957
	sauge 12	92.57672.15	94 18184574	93 9937 219	91.01908522	92.43857224	89.58562.235	89, 76957 763	87.89957134	87.18138991	8053429056	8148157668	80.99738661	13059877	81.24330482	81 35282 735	81.24310169	75.78333738	76.22360248	76.80734413	813346554	17.73386034	78.449905.48
	Lugeon Value- Lug Gauge 13 (92.78776265	95 5 88926 59	96.2 50787 65	923890632	93.7792067	90.3 19262 57	83 80579 15	89.406934	90.3108585	82 2 43363 55	83.9379359	83.2545755	81 9 42602 28	82 96291152	80.62194069	73.65405745	74.75821208	19.16397884	28.88947053	78.70224413	66 50 81 8 64	73.74718535
	mmalized Average Lugeon Value		1.02034778	1.019472635	0.986118778	1.002400763	0.958485384	0.958091508	0.942312044	0.955173551	0.87365814	0.386904535	0.874183126	0.863755772	0.876470773	0.85541119	0.838905581	0.87778565	0.840522535	0.844542494	0.85 60953 13	0.8405522.27	0.82 2273847
	Average Lugeon No Value	92.500N092	94.38293276	94.30198127	91.2 1672454	92.72283031	89 5 856223 5	83.62413106	87.16456836	83.35426787	80.8 141861.8	\$2.03933W7	80.86304619	73.89805489	5 0000 PL 018	80.14545811	77.5 9333365	74.7.2077682	90636397777	78.1.2081233	679345679	77.75170958	76.06150087
	Nomaliæd FlowLoss	1	0.995549226	0.978992345	0.917393626	0.893181414	0.812339443	0.772654442	0.721025458	0.690226099	0.587146163	0.564358198	0.529938.22	0.500445077	0.42531.6005	0.338789389	0.334164145	0.305501157	0.273099519	0.268114552	0.244436532	0.231084209	0.221648567
	Flow loss (Obut, //ime/uength) (կ/min/meter)	0.433434733	0.48526087	0.478173913	0.448 086957	0.4362.6087	0.397043478	0.377391304	0.352173913	0.337130435	0.2367252509	0.275652174	0.258869565	0.244434783	0.20773913	0.194782609	0.163217391	0.149217391	0.133391304	0.130956522	0.119 391304	0.112 859565	0.10826087
	Length Interval (m)	0.46	0.46	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.46	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
) Time (mins)	52	12	22	22	22	22	22	22	22	22	22	52	8	10	52	52	52	52	52	52	52	52
tof	of Qout (mL)	517	5892	5499	5153	5017	4566	4340	4050	3877	3298	3170	207	2811	2389	2240	1877	1716	1534	1906	1373	1298	1245
ary and Secondary-Spading 3.5* Dia. of Pipe	Are a Replacement Rati Multiply by the inverse Maximum Agc/Alotal	0	0.130434783	0.173913043	0.217391304	0.2608 69565	0.304347826	0.3478.26087	0.391304348	0.434782609	0.47826087	0.52173913	0.565217391	0.609695652	0.652173913	0.695652174	0.7391.30435	965609222-0	0.826086957	0.8695 65217	0.913043478	0.956521739	1
РVС Яре-Ріт	Normalized Grouted Area Agc/Motal	0	0.034905585	0.046542113	0.058177642	0.09381317	0.081448998	0.093084227	0.104719755	0.116355283	0.127990812	0.13962634	0.151261869	0.162897397	0.174532925	0.186168454	0.197803332	0.20943951	0.221075039	0.232710567	0.244346095	0.255381624	0.267617152
yard Secondary-Tourhing	AreaReplacement Ratio- Multiply by the inverse of MaximumAg4Abbtal	0	0.130434783	0.173913043	0.217391304	0.260869565	0.304347826	0.347826087	0.391304348	0.434782609	0.4782.6087	0.52173913	0.555217391	0.608695652	0.652173913	0.695 652174	0.739130435	0.782603696	0.826036957	0.899565217	0.913043478	0.956521739	1
PVC Pipe-Primar	Normalized Grouted Area Agg/Atotal	0	0.046633231	0.058177642	0.072722052	0.087265453	0.101810873	0.116355.283	0.130899694	0.14544104	0.159988515	0.174532925	0.189077336	0.203621746	0.218166156	0.232710567	0.247254977	0.261799388	0.276343738	073333330	0.335432619	0.31997703	0.33452144
Side By Side	Area Replacement Ratio- Multiply by the inverse of Maximum Agc(At ot al	0	0.130/3/783	0.173913043	0.217391304	0.260899565	0.3043478.26	0.347826087	0.391304348	0.434782609	0.47826087	0.52173913	0.565217391	0.608995652	0.652173913	0.695652174	0.739130435	0.782608595	0.8.26086957	0.86956217	0.913043478	0.956521739	-
M	Normalized Grouted Area Agy/Atotal	0	0.087266463	0.116355283	0.145444104	0.17453.2925	0.203621746	0.232710567	0.261799388	0.293838209	0.31997703	0.34906585	0.378154571	0.407243492	0.436332313	0.455421134	0.494509955	0.523598776	0.552687596	0.581776417	0.610855238	0.63935.4059	0.669.04288
Slats	Area Replacement Ratio- Multiply bythe invierse of Maximum Agc/Abotal	0	0.13043783	0.17391.3043	0.217391304	0.260869565	0.304347826	0.34782.6087	0.391304348	0.434782.609	0.47826987	0.52173913	0.565217391	0.608695652	0.652173913	0.695652174	0.739130435	0.782608696	0.826086957	0.899565217	0.913043478	0.956521739	1
	Normalized Grouted Area Agr,(N total	0	0.1111111	0.1481.481.48	0.185185185	0.2222.2222	0.299299299	0.296296296	0 3333 33333	0.37037037	0.407407407	0.4554.45554	0.431431431	0.518518519	0.5555 55556	0.59259293	0.62952953	0.66666667	0.703703704	0.740740741	0.77777778	0.814814815	0.851851852
	Normalized Average Pore Pressure (APa)	1	0.975 635979	1162620901	0.9303.0743	0.891042232	0.839340951	0.806451613	0.765 166341	0.722618522	0.672053532	0.636323464	0.605274856	0.579382615	0.485 259769	0.460.261347	0.338333439	0.378195821	0.324916356	0.317457332	01285524904	0.274919513	0.26955369
	Normalized Pore Pressure-Gauge 14()@a)	1	0.982078853	0.97264667	0.935427089	0.894548193	0.842853535	0.815695152	0.787587248	0.72571.213	0.67873 986	0.6438-40785	0.622335408	0.600641388	0.495378231	0.453024301	0.333322015	0.332193039	0.322957932	0.313903037	0.290322581	0.279192605	0.268251273
	Normalized Pore Pressure-Gauge 12(168a)	1	0.978582299	0.964366945	0.933093252	0.894805672	0.840030326	0.79681577	0.759476876	0.732941622	0.674943139	0.641.205459	0.605761941	0.570697438	0.48454746	0.453752843	0.330780855	0.373 199393	0.331690575	0.323161495	0.278051554	0.275.208491	0.261561789
	Norma Ezed Pore Pressure-Gauge 13(kPa)	1	0.96637538	0.943768997	0.921352584	0.8837339502	0.835105383	0.805300912	0.7482.90274	0.709156535	0.6624.24012	0.6238.60182	0.590515502	0.566679331	0.475683891	0.458966565	0.420972644	15557 1675-0	0.320098784	0.315349544	0.288183891	0.2703.25748	0.27887538
	Avg. Pore Pressure (kPa)	5.23)	5.152	5.071	4.912	4,705	4.432	423	4.040	3.816	3.549	3.360	3.201	3.059	2.562	2.43)	2.103	1997	1,716	1676	1.508	1452	143
	Pore Pressure- Gauge 14(kPa)	106.2	5.205	5.156	4954	47/2	4.468	4324	4175	3.847	3.598	3.413	3.299	3.184	2625	2.481	2.085	2 0 0 5	1712	1664	1539	1430	1422
	- Pore Pressure- Gauge 12(MPa)	5.276	5.163	5.088	4.923	4721	4.432	4.204	4.007	3.867	3.561	3.383	3.195	3.011	2557	2.394	2.009	1989	1.750	1702	1467	1462	138)
	Pore Pressure- Gauge 13(kPa)	5.264	5.087	4.968	4.890	4.652	4395	4.247	3.939	3.733	3.487	3.284	3.109	2.983	2.504	2.416	2.216	1996	1685	1660	1517	143	1.458
S/b=118	#of PVC Pipes	0		47	5	9	2	~	6	01	п	11	13	N	5	35	11	13	61	8	77	8	53
		Run0	Run1	Run2	Run 3	Run 4	RunS	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17	Run 18	Run 19	Run 20	Run 21

Figure C.12: Raw Data from S/D=1.18, Unit weight=13.35 kN/m³

	geon Value - Gauge 14	92.10482.612	913229048	89.022.8824	86.40088901	89.50267069	86.9372.3554	85.1097.2711	85.38952241	84.10109978	84339996973	83.5956.4089	79.5587281	74.7223.7907	75.748.4081	77.09951609	78.44617954	77.93233948	78.0611983
	geon Value - Lu Garge 12	32,440,26635	550706 62 19	50.05782823	87.57.248577	87.11815096	87.63 69327 1	869906.68	88.05289295	83.6077753	82.83144855	84.4235616	81.83071863	80.12.33938.4	76.43219514	76.52905655	39.99.285778	75.86430249	79.63437104
	Gauge 13	32 9 5699 105	91.98833322	91.03538484	88.32336029	88.11909055	87.26625111	87.17788751	87.57008357	96.08878334	84.80855326	36.23209955	83.13217056	80.44345668	77.0906354	78.14567475	78.28882.996	80.9917516	80.56550789
	omaized Average Lugeon Value	1	0.985989272	0.973285165	0.945142002	0.953907377	0.943565417	0.9423.24705	0.940455529	0.914446595	0.908117935	0.916073409	0.831052634	0.846922562	0.826023481	0.835057131	0.852993863	0.841132329	0.858398399
	Average Lugeon Ni Value	92.4993676	91.2 9588353	90.0282623	87.42503748	88.23532909	87.2 79204 39	87.16443938	36.99155095	8458572812	84.0033.466	84.73521098	81.49681148	78.333301.35	76.4055962	77.24225654	78.90194789	78.08170563	10,401339.04
	Normalized Flow loss	-1	0.972M 1255	0.947710061	0.897223224	0.874634457	0.81283938.2	0.781 103498	0.746303642	0.679769203	0.633609809	0.600973675	0.552693559	0.501081861	0.474035341	0.452578435	0.403894699	0.3379.0119	0.300090052
	Flow Loss (Qout/Time/Length) (L/min/meter)	0.48226087	0.458556522	0.457043478	0.432695552	0.421826087	0.392	0.376695652	0.359913043	0.32782.6087	0.305565217	0.28382.6087	0.266521739	0.241652174	0.22360/8535	0.2 1826087	0.19478.2609	0.162956522	0.144895652
	Length Imerval (m)	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	Time (mins)	22	52	12	27	27	ю	53	22	12	27	27	ю	ю	22	22	2	27	ю
	Qout (ml.)	5546	5393	5256	4876	4851	4508	4332	4139	3770	3514	3333	3065	2779	9256	2510	2240	1874	1664
y and Secondery-Spacing of *Dia. of Pipe	Area Replacement Ratio- Multidy by the inverse of Moximum Age, A total	0	0.157894737	0.210526316	0.263157895	0.315789474	0.358421053	0.42 1052632	0.473684211	0.526315789	0.578947368	0.63 15789 47	0.634210526	0.736842105	0.789473584	0.842105263	0.894736842	0.947368421	-1
PVC Pipe-Primar, 0.5	Normalized Grouted Area Agr/Atotal	0	0.034905585	0.046542113	0.058177642	0.06981317	0.031449598	0.033084227	0.104719755	0.116355283	0.127990812	0.13962634	0.151.261859	0.162897397	0.174532925	0.136163454	0.197803382	0.20943951	0.221075039
/ and Secondary-Touching	Area Replacement Ratio- Multiply by the inverse of Maximum Agc/Abotal	0	0.157894737	0.21.0526316	0.263157895	0.315789474	0.358421053	0.42 1052 632	0.473684211	0.526315789	0.578947368	0.631578947	0.684210526	0.736842105	0.789473684	0.842105263	0.294736842	0.947368421	1
РУС Яре-Рлітаг	Normalized Grouted Area Agc/Alotal	0	0.043533231	0.058177642	0.072720052	0.087265463	0.101810873	0.116355283	0.130839594	0.14544104	0.15 93885 15	0.174532925	0.189077336	0.203521745	0.218166156	0.232710567	0.24755877	0.261799388	0.276343798
Side By Side	Area Replacement Rotio- Multiply by the inverse of Maximum Agc/Abotal	0	0.157894737	0.2 10526316	0.263157895	0.315789474	0.368421053	0.421052632	0.473684211	0.5.26315789	0.578947368	0.631578947	0.684210526	0.736342105	0.789473684	0.842105.263	0.894735842	0.947368421	1
Md	Normalized Grouted Area Agr/Atotal	0	0.087266463	0.116355283	0.14544104	0.174532925	0.203521745	0.232710567	0.261799388	0.290888209	0.31997703	0.34905585	0.378154571	0.407243492	0.436332313	0.455421134	0.494509955	0.523598776	0.55.26875.96
Slats	Area Replacment Ratio- Multiply by the inverse of Missimum Agc/Alotal	0	0.157894737	0.2 10526316	0.263157895	0.315789474	0.368421053	0.A21052632	0.473684211	0.5 26315 789	0.578947368	0.631578947	0.684210526	0.736842105	0.789473684	0.842105263	0.894735842	0.947368421	1
	Normalized Grouted Area Agc/Anotal	0	0.11111111	0.1481481.48	0.185185185	0.222222.22	0.25929259	0.296295295	0.33 33333 33	7E07E07.E.0	0.407407407	0.414555141	0.431431431	0.518518519	0.555555556	0.5926253	0.62962963	0.66666667	0.703703704
	Normalized Average Pore Pressure (10°a)	1	0.985231123	0.973722908	0.9482.99917	0.9169-49044	0.851453871	0.828911195	0.793553399	0.743366792	0.697717537	0.656032223	0.627261634	0.59165015	0.573876351	0.54197302	0.4734 99137	0.400294099	0.3485.30381
	Normalized Pore Pressure-Gauge 14(k Pa)	1	6 8 9 9 6 8 9 9 6 8 9 9 6 8 9 9 6 9 9 6 9 9 6 9 9 9 9	0.930519481	0.956455309	163/1100-0	0.851153552	0.845301757	0.80500382	0.744451421	0.691558442	0.662146677	0.639301375	0.617647059	0.576394194	0.540870894	0.47421696	0.399350549	0.354087089
	Normalized Pore Pressure-Gauge 12(kPa)	1	0.981405939	2621872720	0.947095032	0.928119609	0.857389304	0.808510638	0.783400422	0.751581369	707111367	0.6530.4102	0.623921794	0.578110025	0.573317999	0.546674334	0.466743339	0.4117.3088	0.348284455
	Normalized Pore Pressure-Gauge 13(kPa)	1	0.982652274	0.957810332	9758-62860	0.922706245	0.855844256	0.83288.3577	0.792212799	0.734001542	0.694487278	0.647841172	0.617964534	0.579128527	0.571896685	0.538357749	0.479558234	1955 N/682 TO	0.3461835
	Mg. Rore Pressure (kPa)	5.214	5.137	5.077	4.949	4.781	4.491	4322	4137	3.876	3.638	3.400	3.270	3.085	2.992	2.826	2.469	2.087	1822
	Pore Pressure- Gauge 14(kPa)	5.236	5.192	5.134	5008	4.713	4.909	4406	4.215	3.838	3.621	3.467	335	3.234	3.018	2.832	2.483	2.091	1854
	Pore Pressure- Gauge 12 (kPa)	5.217	512	5.075	4.941	4802	4473	4.218	4.087	3.921	3.689	3.433	3.255	3.016	2.991	2.852	2.435	2.148	1817
	Pore Pressure- Gauge 13 (IPa)	5.188	5.038	5.021	4.899	4.787	4.492	4321	411	3.838	3.603	3.361	3.205	3004	2967	2.793	2.488	2022	1796
VD=1-42	# of PVC Pipes	0	8	47	5	9	2	80	6	0	п	11	13	N	15	16	17	81	61
~		0 un	Un1	Run2	Run 3	Run 4	Runs	Run 6	Run 7	Run 8	Run9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Nn 17

المنسارات المستشارات

Figure C.13: Raw Data from S/D=1.45, Unit weight=13.35 $\rm kN/m^3$

128

	geon Value - Gaige 14	92.53448877	91.733.08418	LISSCIDE 88	87.171.4946	85.49191179	84.71.26052	84.78159237	85.945 39939	88.64661565	84.36043565	82.80014107	81.055 08876	79.61304483	81.553 45602	81 325 54489
	eon Value Lu	93 232458 08	91.65459873	81 64961318	NL 19516E 88	86 199225 66	10/1686038	98 198399 98	84.95752124	84.263878.99	N/ 2125818	8630071.38	85.04034761	26142757.57	81.41371398	81.45719408
	Lugeon Value - Lug Gauge 13 (93.15 695794	91.9751939	STIFFULLE S	1656102.6.98	86.0305483	88.58094016	86.04879055	87.2.4659995	96353916398	84.00216653	86,666,60089	83.94607843	82.59885576	8194729817	8181270553
	irmalized Average Lugeon Value	1	1/0000000	10420010000	0.94085153	0.92.3820445	0.92.9503742	0.928511285	0.9252549	0.92.9044859	0.907713742	0.915980245	0.8997061	0.357042635	116516178.0	0.873152728
	vaue Vaue	92.99014878	91.47 156113	20104114212	87.4899238	20020053	86.43 469129	86.342.40252	86.03964572	86.332.01964	84.40.84359	85.1771.3825	83.3164403	81.62.642359	81.63753175	81.1946021
	Normalized Row loss	1	0.976488.027	77 CCTRU-6-TR	107 189278 0	0.816828131	0.792429135	0.748265558	0.701471116	0.6681019.02	0.612127736	0.5897021.89	0.565303193	0.527090061	0.490132759	0.450843.201
	How Loss (Qout/Time Aengh) (L/min/meter)	0.484695652	0.473304348	0.450086957	0.423130435	0.335913043	0.384086557	0.362835652	0.34	1323326287	0296695622	0.285826087	0.274	0.255478261	0.237565217	0.218521739
	Length hterval (m)	046	046	046	046	046	046	0.45	046	046	046	046	046	046	046	046
	Time (mins)	25	25	5 X	25	25	25	25	25	22	25	25	25	25	25	25
36	Qout (ml)	5574	548	3070	4866	4553	4417	4171	3910	3724	3412	3287	3151	2938	2732	2513
and some 6.0 Mary Spanigo	rea Replacement Ratio- Ufbph by the inverse of Maximum Agy Alotal	0	0175470588	U1HCHC210	0352941176	0411764705	0470588235	0529411765	058235294	0.647058824	0.705882353	0.764705882	0823529412	1962552880	094117671	1
PIC Pbe Arinay a 050 P	Normalized A Grouted Area M Agc(Nootal	0	0.09490535	010507560	0.09981317	0.081448698	0.093084227	0.104719755	0.116355283	0.127990812	0.13962634	0.151261899	0.162897397	0.174532925	0.136168454	0.197803982
Pand Sender Touching	Area Replacement Ratio- Mult bilv by the inverse of Maximum Ago, Art dal	0	0.176470538	0.204117647	0.352941176	0.411764705	0.470588255	0.529411765	0.588235.294	0.647058824	0.705882.353	0.764705882	0.825529412	0.832552941	0.941176471	1
P.VC Ape Prima	Normalized Grout ed Area Agr/Atoxial	0	0.04633231	0.077777050	0.087266463	0.101810873	0.116355283	0.130899694	0.14544104	0.159383515	0.174532925	0.189077336	0.203621746	0.218166157	0.232710567	0.247.55877
5.0e 8,56e	M ea Replacement Retio- Multiply by the inverse of Maximum Apc/Abotal	0	0.176470538	0114211200 U	0.352941176	0.411764705	0.470588235	0.529411765	0.588.255.294	0.647058824	0.705 882553	0.764705882	0.823529412	0.882 352941	0.941176471	1
24	Normalized Grouted Area Agg(Atotal	0	0.087266463	0 1455AMI (A	0.174532925	0.203621746	0.232710567	0.261799388	0.290888209	0.31997703	0.34905555	0.378154671	0.407243492	0.436332313	0.455421134	0.494509555
38	AreaRighlacement Ratio Multiphy by the inverse of Maximum Agc Atabal	0	0.176470538	0.794117647	9/11/62220	0.411764706	0.4705882235	0.529411765	0.588235294	0.647058824	0.705882553	0.764705882	0.825529412	0.82252941	0.941176471	1
	Normalized Grouted Area Agc(Atrotal	0	0.111111111	0.195195195	0.2222222	0.259259259	0.295295295	0.333333333	137037037	0.4070970970	0.4444444	0.481481481	0.518518519	9555555550	0.59259293	0.62962963
	Normalized Average Pore Pressure (JØa)	1	0.9927.09599	TO-TODCO	0.927863401	0.834134945	0.8552328	0.805909062	0.75813775	0.71912771	0.6N36209	0.643793567	0.6309 39439	0.60791712	0.558291232	0.5163.39451
	Normalized Pore Pressure Gauge 14(109)	1	0.935 227136	12110000000	0.926689576	0.834116075	0.865 597556	0.81672.394	0.755250955	0.697403589	0.671439481	0.659 030164	0.64528446	0.612.633412	0.556128293	0.512982054
	Nomalized Pore Pre ssure -Gauge 12(kPa)	-1	0.993341416	10100000	0.921285604	0.883949192	0.858545035	0.790800516	0.770207852	0.73960739	0.67282525	NJ95LE8E910	0.620092379	0.616528176	0.561585835	0.52209777
	tomalized Pore Pressure-Gauge 13(149)	-	0.939044782	400110700m	0.935614099	0.894489717	99239226280	0.810 109552	176066871.0	0.720545839	0.678839131	0.633855078	0.627330386	0.594464732	1335178551	0.513357678
	Ng. Pare h sure (kPa)	5.212	S1N	NUT DO	4836	4609	444	4.201	3952	3.748	3.515	3.356	3.289	3.169	2.910	2.691
	re Pressure- A	5.23	5.213	2002	4.854	4.61	4534	4.278	3356	3,653	3517	3.452	338	3.209	2.913	2.687
	are Pressure. Po auge 12(kPa) Gi	5.196	5.164	S DK	4.787	4583	4.451	4.109	4002	3.843	3.495	3317	322	3.204	2.918	2.716
	Pore Pressure - P. Gauge 13 (Ma) G	5203	516	1015	4.868	4602	4335	4215	3.897	3.749	3532	328	3.264	3.093	2899	2671
ឌាស្	# of PVC Pipes	0			9	2	8	6	10	п	11	8	Ņ	5	91	1
5		Run0	Run1	Rin 3	Rund	Run S	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15
لاستشارات	JL			Ì												

Figure C.14: Raw Data from S/D=1.62, Unit weight=13.35 $\rm kN/m^3$

129
	ugeon Value- Gauge 14	93.68895129	93.91572009	94.16221221	94.20005125	91.672.69097	89.46940251	90.28138549	86.95652174	85.9633333	88.1837757	88.49557522	90.02835539
	ugeon Value- Li Gauge 12	1763468.89	94.3699463	93.81 709608	92.81.423007	92.97940871	92.90756176	9197312115	91.02 7861 33	391502166	88.66155158	88.1182/0901	87.85324436
	Lugeon Value- Lu Gauge 13	94.28375452	94.6073.4749	94.58339675	94.25560465	93,48615963	92.09240875	93.0092.2502	90.73197323	9050576752	87.6887.4047	8632692843	90.08275319
	malized Average Lugeon Value	1	1.003279757	1.002107762	0.99748308	0.986360145	0.97316308	0.972531243	0.95298279	0.942051494	03381605	0.932419513	0.950215762
	Average Lugeon Nor Value	93.98840099	94.29668013	94.19652626	93.75189965	92,705,43253	91.46605293	91.40567587	P0802 EES 29804	88.542,8723.2	88.17623347	87.63663777	70672606.88
	Nomdized flow Loss	1	0.996096522	37.107.5255.0	0.978353442	0.944995451	0.878105039	0.847941803	0.79737402A	0.769162527	0.7012.055.29	0.6325.408.09	0.60841022
	Flow Loss (Qout, Time, Langth) (L(min,(meter)	0.490386657	0.488173913	0.486347826	0.479478261	0.463130435	0.430347826	0.415565217	0.39782609	0.376956522	0.343652174	0.31	0.298173913
	length Interval (m)	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	Time (mins)	25	22	52	22	22	12	52	52	52	52	22	52
	Qut(mi)	9695	9614	885	5514	3326	96	613	161	499	3952	3955	909
and Secondary-Spacing of Dia. of Pipe	Area Replacement Ratio- Mutiply by the inverse of Maximum Agc/Atotal	0	0.230769231	8062 69V0 E.D	0.384615385	0.461538452	0.538461538	0.615384615	0.692307692	0.769230769	0.846153346	0.923076923	1
PVCPipe-Primary 0.5*	Normalized Grouted Area Agc(Artotal	0	0.034905585	0.046542113	0.058177642	0.05981317	0.081448698	72.080680.0	0.100719755	0.116355283	0.127990812	0.13962634	0.151261869
and Secondary-Tourching	reaReplacement Ratio- Mitidy by the inverse of Maximum Agd/Atotal	0	0.230769231	80E2 69V0 E.0	0.384615385	0.461538462	0.538451538	0.615384615	0.692307692	0.769230769	0.846153846	0.923076923	1
PVC Rpe-Primary a	Normalized A irouted Area M Agc/Arotal	0	0.043633231	0.058177642	2202272700	0.087.2654.63	0.101.810873	0.116355283	0.13089594	0.14544104	0.159988515	0.1745329.25	0.189077336
de By Side	ea ReplacementRatio- Attiply bythe inverse of Maximum Agd/Atctal	0	0.230769231	0.307692308	0.384615385	0.461538452	0.538461538	0.615384615	0.692307692	0.769230769	0.846153846	0.923076923	1
PVCSI	Normalized Ar irouted Area Mi Agr(Atotal I	0	0.087.266463	0.116355283	0.14544104	0.174532925	0.203621745	0.232710567	0.261799388	0.23383203	0.31997703	0.34905585	17382154671
Stats	ea Replacement Batio Utiply by the inverse of Maximum Agd/Atotal	0	0.230769231	80E269X0E-0	0.384615385	0.461538452	0.538461538	0.615384615	0.692307692	0.769230769	0.846153846	0.923076923	1
	formalized A outed Area M Agc/Abotal	0	1111111	1148148148	1105 1851 85	1222222	129259299	1295295295	EE EEE EEE I	76076075.0	1407407407	1451455141	1481481481
	Normalized Average Pore Pressure ()#a)	1	0.992840248 (0.990233194 (0.980822033 ()	0.95805431 0	1220052060	0.871891581 0	0.837051716 0	0.81645743	0.74705954 0.	0.678386.499 (0.64028639
	Nomalized Pore ressure-Gauge M(#a)	1	0.993691455	162857862.0	0.973045307	12 605 7809 21	0.919518257	0.879946473	121601658.0	0.838463009	0.744981839	0.669661633	0.633 1485 38
	Norma fized Pore Pressure-Gauge 120kPa)	1	0.992136555	0.99424626	0.990794016	0.95531262	0.888377445	0.8761028	0.823360184	0.809551208	0.743383199	0.64721903	87.165.6069.0
	Normálized Pore Pressure-Gauge 13/0°a)	1	0.992689496	0.983226626	0.978645633	0.953058869	0.898999515	0.89956137	0.828587918	0.801269719	0.753943825	0.690842632	0.636783378
	Avg. Pore Pressure (kPa)	5.214	5.177	5.164	5.114	4.995	4.705	4.546	4.365	4.257	3.897	3.537	3.339
	Pore Pressure- Gauge 14(kPa)	5.231	5.198	5.165	060'5	5.052	4810	4603	4.494	4385	3.897	3.503	3312
	Pore Pressure- Gauge 12(18a)	5.214	5173	5.184	5.166	4981	4.632	4568	4233	4221	3.876	3518	3394
	Pore Pressure - I Gauge 13(kPa)	5.198	5.16	5.142	5.087	4.954	4.673	4.488	4.307	4.165	3.919	3.591	331
2.17	tof PVCRpes	0	8	-7	5	9	7		6	0	п	12	8
ŝ		Run 0	Run 1	Run2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Pun 10	9un 11

Figure C.15: Raw Data from S/D=2.17, Unit weight=13.35 kN/m^3

	lugran Våve Gauge 14	9154626193	M59629616	92.05225818	5012709307	87,455,48979	30.35363996	85.93452711	8364675794	8125639475	8140828145	77/68836154	78.72630265	77.35227758	73.71192178	77.14805436	8105029484	61/JN/667/1/	73.77710191	70.31055901	6816507001	65.42183454	69.19617115	5907733156	M&1%65E9	621118012N	6426112467
	Lugeon Value-Gauge 12	92.6228615	32,255858355	92.24968135	8151020506	88.33278412	8354534964	8733219159	8479786011	81.8037253	8284547134	80422376	82.29866643	79.01457581	76.92307692	90005620008	8354117515	76.77690811	77.34299517	72.84989832	72.3241.4621	69.84459577	76.27765065	61,66637797	63.65788594	66.20840839	673556643
	Luge on Value-Guige 13	91.84377A16	12577846.12	£ 13713699	605225-16	87.03291666	90.9730363A	85.37942209	86.075261	81.19076135	86.03777664	&I.02653483	87099038	8, 90019162	74.22392886	85.22290735	80.22440393	PI 59288964	77.12874865	260220162	75.022488	73.84942611	7:94/56047	66.64147951	£1.81248712	120000000	66.53758141
	romalized Average Luge on V al ue	-1	0.994753019	1.001603905	0.985815288	0.952(9308	0.981375268	0.9370179-8	806920226-0	0.891848178	0.90535004	6162062810	0.83575895	0.853059432	1904/0258/0	0.87666276	0.8880152	0.846403037	0.826583331	0.803081923	0.779605153	0.7559079	0.800604738	0.67403121	0.713926105	0.711133535	0.71764958
	Average Luge on Volue	92.0020584	9L 5193376	92.14962745	90.6970503	87.6037245	10122882106	86.20758605	848283794	82.05187585	83.3860526	80132051105	81 3000818	79.4032478	76.5525222	80.6547841	81.5875706	77.87082712	76.04737225	73.88515511	71.7252655	69.53431325	73.657299	62.0122631	6216836759	66.4257538	1862520.99
	Normalized Flow Loss	-1	01 996244344	124367421	0.90550362	0.82479638	0.80760181	0.71594118	0.65417547	0.601542505	0.576289593	0.527663801	0.502081448	0.45918552	0.40795301	0.391483213	0.336770588	0.307.49321	0.289773756	0.256105597	P1685420	734917120	121219457	0.161085973	0.153303167	0.142081448	0.13832579
	Flow Loss (Clout/Time /Length) (L/min/me teer)	0.480434783	0.473826087	0.453130435	0.455043478	0.39626087	0388	0.34365217N	0.31426087	0.288521739	0.276869565	N1253652174	0.241217391	0.220608696	0196	0.188086957	0.1516521W	0.147565217	0.159217391	0.123043478	0.112608596	0.106347826	0.104347826	0.07391304	0.07365217M	100828087	0.06573913
	Length the rval (m)	970	940	940	0.46	0.46	0.46	0.46	970	0.45	0.45	940	0.46	0.46	0.46	0.46	9970	9970	0.45	0.45	0.45	0.46	0.46	0.46	0.46	0.45	970
	Time (mins)	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	ю	R	ю
oť	f Qout(mt)	2225	846	2211	2003	1997	4462	3962	3614	3318	3184	2817	2774	2231	754	2163	1869	1697	1601	1415	1295	1200	1200	88	847	22	<u>1</u> 2
ry and Secondary-Spading o 5*Dia. of Mipe	Area Red acoment Ratio IAAI tiply by the inverse of Maximum Agy Atotal	0	011111111	0.148148148	0185185185	0.22222222	6526526570	0.296296296	0.333333333	0.37037037	0.407407407	0.45555554	0.481.481.481	0.513513519	955555550	052652650	0.62962963	1999999990	0.703703704	14/06/06/0	877777770	0.814814815	0.851851852	60000000010	9765765760	0962962961	1
PVC Mpe-Prime 0	Normalized Grouted Area Agr,Nitotal		0.034905585	0.046542113	0.058/7/642	0.06981317	0.081448558	0.093084227	0.104719755	0.11635283	0.127993812	0.13962634	0.151261869	0.162897397	0.1762205	0.186169454	0.197803982	0.20943951	0.221075039	0.23270567	0.24436095	0.255986624	0.267817152	0.27925368	073038306710	0.30223737	0.31419066
and Secondary-Tour ching	rea Replacement Rado - Mólódy by the inverse of Meximum Agy Atotal	0	0.1111111	0.148148148	0.15135135	0.2222222	0.2926295	0.26296296	0.33833333	120020020	0.407407407	0.45555554	0.48.481481	0.526518519	0.55555556	0.5929293	0.62962963	0.66666667	0.78703704	0.740740741	0.7777778	0.814814815	0.83351852	0.032000099	97652692610	0.92962963	
AC Mipe-Primary	omalized / suted Area // &/# otal		043633231	058177642	07272052	687265463	101810873	116355283	130899694	14544101	159988515	174532925	189077336	303621746	218166156	232710567	712481J	261799388	276343788	50288209	305432619	31997703	33452144	34906585	363610261	37815467	3066905
P P	rea Replacement Ratio- Ntiply by the inverse of Gr Mooimum Age (Rootal	0	0.1111111 0	0.148148148 0	0.185185185 0	0.22222222 0	0 5655650 0	0.296296296 0	0.33333383 0	0.3037037 0.	0.407407407	0.45555555 0	0.481481481 0	0.518518319 0	0.555555556 0	0 5656563 0	0.62962963 0	0.6666667	0_7037/8704 0	0.740740741 0.	0.77777778 0.	0.814814815 ()	0.851851822 ()	0 0000000000000000000000000000000000000	0 9052652610	0.962962963	1
PVCS	lormalized A outod Area N (gr/Atodal		634997280	116355283	145444104	17632925	203621746	232710567	261799388	50288205	131997703	34906565	378154671	407243492	436332313	465421134	494503655	9/1865575	552687596	S81776417	610865238	63954059	882106991	698131701	727220522	75630943	785398163
lats	is Replacement Ratio- hip Movthe inverse of Gr Assimum Age, (Noot al	0	0.11111111 0	0.148148148 0	0.185185185 0	0.22222222 0	0 65265265 0	0.296296296 0	0.333333333 0	0.37037037 0	0.407407407	0.435555544 ()	0.481481481 0	0.518518519 0	0 935555556 0	0 86265265 0	0.62952963 0	0 09999999 0	0.703703704 0	0.140740741 0	0.77777778 0	0.814814815 0	0.851851852 ()	0 6000000000000000000000000000000000000	0 926526526 0	0.962962963	1
	uted Area M.		111111	48148148	818185	mm	65765765	96296296	8333333	30337037	201/01/01	1000000	181481481	18518519	95555559	86265283	6262963	1999999	N37U3704	10/00/00	811111	114814815	51851852	6888888	9060600	62962963	-1
	Mormalized Average Gro Pore Pressure (JPIs)	1	0.99144545 0.1	0.94165702 0.1	0.918549736 0.0	0.86620703 0.2	0.82292865 01	0.763372909 0.2	0.70943444 0.5	0.6726503 0.	0.63585567 0.0	0.604749138 0.4	0.568173114 0/	0.532043977 0.5	0.490297439 0.5	0.446572195 0.5	0.379420401 0.	0.362887782 0.6	0.350568109 0.1	0.318907188 0.1	0.3005102 0.1	0.28737393.00	0.27128814 0.5	0.238988898 0.5	0.214732542 0.0	0.199795736 0.0	0.19066768
	Normalized Por e Pressure-Gauge 14()/2a)	-1	86589576610	0.937881098	0.919778963	0.863376524	0.818216463	0.762004573	89/168517.0	0.685022866	0.648056402	0.622141768	0.583841463	0.543445122	020666207	0.464557927	0379954268	0.363757622	0.359565549	0.333460366	0.314786585	0.303925305	1327947561	0.249618902	0.219512195	0.20941311	0194931402
	Normalized Pore Presaure-Gauge 120/9-aj	1	1211010600	214228434610	0.926739927	0.854854444	0.835357625	0.758627338	0.714478504	0679969154	0644303055	01603053608	0.565066512	0.538268749	0.49122807	0.453248505	0373048005	0370541739	0.3470214	0.325621747	0.300173511	0.288027762	0.263736264	0.241951031	0.223057644	0.198766146	0.188162714
	Norm dize d Pore Pressure-Gauge 13(0Pa)	1	0068S1660	0940164405	0909195183	1/108350/18 0	0815331677	0769451348	0697954502	0655132862	0615178742	0594018352	0555534315	0514433187	0472948723	0421907857	N6550258E D	0354/254	0345058305	0.297648633	0.286943223	0270120436	0.262664882	0225387115	0.201682279	0191168037	0.18887402
	Avg. Pore 1 sure (J2a)	222	5177	4917	4797	453	429	3306	3705	3516	3300	3158	2967	2778	2560	2332	1381	1895	1831	1665	1570	1501	1417	1248	1121	103	9660
	ze Pressure- suge 14(0a) Pr	5248	5.209	4.922	4.827	4531	424	3.999	3757	3.995	3.401	3.265	3.064	2.852	2.669	2.438	1.94	1909	1887	1750	1622	1596	1.508	1.310	1152	1099	1023
	ne Pressure- P.c Nge 12()/Pa) Ge	5.187	5.196	4.92	4.807	4.85	433	3.965	3.705	3.57	3.302	3.54	2.91	2.792	2.588	2.31	155	192	180	169	1.57	1.44	1.368	1.25	1.57	1.01	0.976
	are Pressure- Pr	5.231	5187	4918	4756	4553	4265	405	3651	3427	3.218	3055	2906	2691	247N	2207	2015	1851	1805	1557	1501	1413	1374	113	1055	100	8850
ų	A PACPipes Po	0		-7	2	9	~		6	10	=	11	13	2	15	16	11	81	61	8	21	2	87	23	20	ж	23
S0r.	°#	Bun0	Bunt	Run2	Aun3	Bun4	Auns	Aun6	Run7	Bun8	Pun9	Run 10	Run 11	Run 12	Run B	Run M	Run 15	Run 16	Run D	Run 18	Run B	Run 20	Run Z	Run 22	Run 28	Run 21	8 un 25
	1											É					-										

Figure C.16: Raw Data from S/D=1, Unit weight=13.82 kN/m^3

				_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Math Image Math <			Lugeon Value-Gauge 14	9T 5146363	11062822.06	90.21586621	88.41141559	120007155.88	1112/12/22/38	85.35200408	86.85416218	79.88727416	80.60933037	81.55794807	79.67513828	75.59640607	TA 72826087	80.45737323	77.97758413	PA 939916958	75.04814027	70.84581225	67.0334365	65.6452726	66.70158896
Part Part </td <th></th> <th></th> <td>Lugeon Value-Gauge 12</td> <td>32.8910905</td> <td>95000016</td> <td>89.64089953</td> <td>88.6646916</td> <td>12602661768</td> <td>86.97636577</td> <td>85.78369775</td> <td>86.10961695</td> <td>90.88697587</td> <td>81.65837223</td> <td>8458051125</td> <td>82.38138673</td> <td>78.41696892</td> <td>78.00759814</td> <td>82.03802114</td> <td>78.08943454</td> <td>76.83175414</td> <td>78.09739763</td> <td>73.28276893</td> <td>71.79633867</td> <td>71.01051123</td> <td>69.58950692</td>			Lugeon Value-Gauge 12	32.8910905	95000016	89.64089953	88.6646916	12602661768	86.97636577	85.78369775	86.10961695	90.88697587	81.65837223	8458051125	82.38138673	78.41696892	78.00759814	82.03802114	78.08943454	76.83175414	78.09739763	73.28276893	71.79633867	71.01051123	69.58950692
			LugeonValue-Gauge 13	93.1244853	9L 42/60962	25827189.02	90.23414157	89.37407925	87.33519257	84.6420396	88.43753306	82.21299186	83.76424652	86, 59303789	82.87815891	78.9483575	78.67981403	84.3336187	80.95511716	77.06999214	77.81426507	77.02023746	72.99694534	69.39013715	67.88295226
- 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1			Normalized Average Lugeon	1000	0.985	0.976	0.963	0.962	0.939	0.922	21610	0.875	0.895	0.910	0.882	0.839	0.833	0.889	0.854	0.824	0.832	0.796	0.762	0.742	0.736
- 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1			Average Lugeon Value	92.505	16076	90.276	89.096	86.88	86.894	85.27	87.125	81.965	81.990	84.193	81.620	77.625	660'12	82.266	78.983	76.269	296.34	73.630	70.513	68.607	68.037
			Normalized Flow to ss	1000	5450	0.934	66810	0.854	16/10	0.739	0.679	N0910	0573	0559	0.513	0.462	0.417	0.418	0343	0.310	1920	0.248	0.226	0.215	1020
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $			Flow Loss (Qou ViTime Aungth) (L/min (metoor)	0.482	0.470	0450	0.433	0411	0.381	0.356	0327	1620	0.276	6970	0.247	0.223	1020	1070	0.165	0.149	0129	0.119	0.109	0.103	0100
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $			Length Interval (m)	0.45	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.45	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.45	0.46	0.46	97
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $			Time (mins)	19	ю	ю	ю	ю	ĸ	ю	ю	Ю	10	ю	ю	R	ю	ю	ю	ю	ю	10	ю	R	ю
Physical biologe	-t-		f Qost (mi.)	5541	5402	5176	4883	4732	4383	4096	3762	3345	3175	3097	2845	282	2310	2315	1902	1715	1481	1372	1255	1189	1146
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	ary and Second ary-Spacing o	15*Dia. of Mpe	Area Replacement Ratio MAI tiply by the inverse o Maximum Agr/Atotal	0	0.130434783	0.175913043	0.217391304	0.20369565	0.3063478205	0.347826087	0.39(304348	0.434782609	0.47826087	052173913	0.56217391	0.609695652	0.62173913	0.69665217N	0.739130435	0.725609696	0.826096957	0.8B565217	0.913013478	0.96621739	1
$ \begin{array}{ $	PVCPlpePrim		Normalized Grouted Area Agc(Atotal	0	003/00585	0.046542113	0.058177642	0.06981317	0.081448698	7224806600	0.104719755	0.116355283	0.127990812	0.13962634	0.151261859	0.162897397	0174532925	0.186168454	0.197803982	0.20943951	0.221075039	0.232710567	0.244346095	0.255981624	0.267617152
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		yand Secondary-Touching	Area Replacement: Ratio- Multiply by the inverse of Maximum Agr/Abdal	0	0.13043783	0.178913043	0.277391304	0.20266565	0.3083478205	0.34826087	0.33(3)4348	0.438782609	0.47826087	052173913	0.56217391	0.609695652	0.62173913	0.6865217N	0.739130435	0.720609596	0.826086957	0.89565217	0.913043478	0.966521739	
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		P//CP i pe-Prima	Normalized norde d'Arre a Agr, Ploot al	0	1043633231	0028177642	2502272700	08726463	0.101810873	0116355283	1130899694	114544104	1159988515	0174532925	3189077336	307123602.0	1218166156	1232710567	1184521070	1261799388	1276343798	602880670	1305432619	0.31997703	0.33452144
Point Image: Second seco		ade By Side	trea Replacement Ratio- 416 ply/by the inverse of G Maximum Agr/Abotal	0	0.13043783	0.173913043	0.217390304	0.2609B565	0.304387826	0.347826087	0.391308348	0.434720509	0.47826087	0.52173913	0.56527391	0.609595522	0.652178913	0.69562174	0.739130435	0.782609596	0.82608667	0.86956217	0.9130.8478	0.95652/739	
Protection Control Contro Control Control		PVC	nued Area N	0	87266463	116355283	14544104	17632925	303621746	232710567	061799388	602883062	31997703	3/806585	178451878	172A3482	196332313	N5421134	194503955	9/186525	9652832596	S1776417	510855238	539954059	86904288
Polation		lats	as Replacement Ratio- No. 16 July by the inverse of Gro Assimum Agr/Abstal A	0	0.13043783 0.0	0.1739(3043) 0.1	0.21739(304 01	0.260869565 01	0.304347826 0.1	0.347856087 0.2	0.391304348 0.1	0.434782609 0.1	0.47826087 0.	0.52173913 0.	0.56527391 0.5	0.609595652 0.1	0.652178913 0/	0.69562174 0/	0.739130435 0/	0.782609595 0.5	0.82609957 0.5	0.869665217 0.5	0.91303478 0.6	0.95621739 0.6	1
Interface Interface <t< td=""><th></th><th></th><td>malized Au ubcdArea M</td><td>0</td><td>111111</td><td>8148148</td><td>85185185</td><td>222222</td><td>65765765</td><td>96296296</td><td>3333333</td><td>2002003</td><td>07407407</td><td>4444444</td><td>181481481</td><td>18518519</td><td>9555555</td><td>86576576</td><td>5292963</td><td>1999999</td><td>MULSION MULLING</td><td>40740741</td><td>811111</td><td>14814815</td><td>51851852</td></t<>			malized Au ubcdArea M	0	111111	8148148	85185185	222222	65765765	96296296	3333333	2002003	07407407	4444444	181481481	18518519	9555555	86576576	5292963	1999999	MULSION MULLING	40740741	811111	14814815	51851852
House Annuel Manuel Manuel<			No born diaz d Avverage Sore Pressure (J2Pa) Ag	-1	10 6699100660	0.9571867M 0.1	0933700243 0.1	0.887943172 0.2	0.8421861 0.2	0.802050568 0.2	0.720945956 0.3	0.089555868 0.3	0.645486625 0.4	0.614104697 0.4	0.581914757 0.4	0551004736 0.5	0500191988 0.9	0.46979333 0.9	0.402022271 0.6	0.37539997M 0.69	0.321259439 0.7	0311094091 0.7	0.297132983 0.7	0.289325483 0.8	0.281158003 0.8
Image: section of the secti			Normalized Pore Pressure-Gauge 14()/94)	1	0.982716049	0.947578348	0.930854198	0.894710351	0.838936372	0.79262593	0.715289549	0.691547958	0.650522317	0.627160494	0.58974359	0.559734093	0.510541311	0.475213675	0.402849003	0.377967711	0.325925926	0.319848053	0.309211776	0.299145299	0.283760694
House Interfact I			Normalized Pore Pressure-Gauge 12(VPa)	1	160#66/0	0.96796915	15321610	157885988.0	0.844804318	0.80062695	0.732407943	0.693271641	0.651221362	0.613812298	0.578987368	0.547755402	0.49683391	0.47220262	0.408228514	0.374204743	0.31791016	0.313861577	0.29300293	0.280701754	0.276074902
Houts Protein			Normalized Pore Pressure-Gauge 13(494)		0.993042131	0.956126788	0.928102049	0.889833781	0.842963187	0.813297255	0.714920758	0.683803634	0.63703131	0.601082335	0.576923077	0.545419405	0.493428682	0.461345187	0.39485891	0.3739855311	0.319868574	0.299381523	N2714408852.10	0.287978353	0.28372632M
Image: section of the sectio			Avg. Pore Pressure (1/2 a)	6 7 56	5.157	4.965	4.863	465	4.337	4.08	3.765	3.52	3.367	3.199	3.03	2.870	2.605	2.42	2.091	1935	163	160	158	150	145
Modula Product Product Product Product			Nore Pressure-	5.265	NLS	4389	4901	4658	4417	4173	3766	3641	3425	3302	3105	2947	2688	2502	2121	1990	1.716	1684	1628	1575	1494
QOLLS POLIS POLIS Mon Processor Montal Mon Processor Montal Montal Mo			ore Pressure- auge 12()/P a) (5.187	5.158	5.021	4.887	4.613	4.382	4.152	3.799	3.596	3.381	3.184	3 003	2.841	2575	2.452	2.118	1.941	1.68	1.628	1520	1456	1432
Acourt Acourt			ne Pressure- P suge 13(0%a) G	S.1M	5138	4947	4802	4604	4361	4208	3699	3538	3296	3110	2985	2822	2553	2387	2043	1935	1665	1549	1/85	1490	1468
Mond Mond March March		S/D=118	It of PVC Ripes Ga	0		4	s	9	2		6	10	ц	7	13	14	15	16	13	18	19	8	21	2	22
				Aun0	Runt	Run2	Run3	Bun4	Auns	Aun6	Run7	Aun8	Bun9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17	Run 18	Run 19	Run 20	Run 21

Figure C.17: Raw Data from S/D=1.18, Unit weight=13.82 kN/m^3

Holic			_				_				_			_						
Here Table Here <		lu geon Value-Gauge 14	92.47889485	21/20830212	90.32732748	88.49125377	90.27211694	87.05120436	87.1224693	85.12537624	68852h6 1%	77.2449454	81.96952434	80.25276461	81.15528393	80.4191784	74 55896652	73.50227214	73.67210054	71.50414605
Her I		Lugeon Value-Gauge 12	92 1958684	92.09647558	91.68034317	89.97091992	89.18246392	10.39781331	86.79120516	83.09129094	85.57133134	78,5594875	83.52832345	1696862818	82.09247956	82.28433136	77.4349491	75.50092745	72.65643397	72.03410837
Her Image: state		lugeon Value-Gauge 13	92.817254	66680288 16	162182387361	91.2 7376734	91.15544334	89.88961782	84.69791078	86.37588257	86.47383219	79.3748033	85.89334676	80.58375635	82.3830335	853536725	77.88 721409	8018717227	7.2.2650428	69.7 6688354
Here Fig. Fig. <th< th=""><th></th><th>Normalized AverageLugeon Volue</th><th>1</th><th>0 9927782</th><th>0.986904224</th><th>0.971901167</th><th>0.975128531</th><th>0.963151552</th><th>0.931821776</th><th>0.917249417</th><th>1/20980371</th><th>0.847M15679</th><th>0.901818946</th><th>0.87444001</th><th>0.885175907</th><th>0.893391363</th><th>0.828120072</th><th>0.809174494</th><th>0.787701235</th><th>0.768551409</th></th<>		Normalized AverageLugeon Volue	1	0 9927782	0.986904224	0.971901167	0.975128531	0.963151552	0.931821776	0.917249417	1/20980371	0.847M15679	0.901818946	0.87444001	0.885175907	0.893391363	0.828120072	0.809174494	0.787701235	0.768551409
		Average Lugeon Value	92.49664172	31.82354946	31,28532645	88189759399	90.19611432	89.08828403	86.19039488	84,842,433,49	85.45398173	78.38310443	83.41522396	81.88313343	81.87579875	82.6357078	76.59832556	74 84592328	72.85971892	21.08942428
		Normalized Flow Loss	1	0.982693859	0.952372962	0.915388779	0.889049251	0.829334296	0.75771248	0.670936316	0.645400366	0.555294967	0.553851705	0.526970954	0.471946599	0.441638102	0.387335378	0.3341151	0.306151903	0.262132419
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Flow Loss (Qout/Time /Length) (L(min,/meter)	0.482	0.473652174	0.69043478	0.441217391	0.428521739	0.39973913	195217391	0323391304	0.311565217	0.267652174	0.266956522	1220	0.227478261	0.212869565	0.136695 652	0.161043478	0147565217	0126347826
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Lengh beval (m)	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		me (mins) In	Я	R	ю	R	ю	R	ю	R	R	R	R	ю	R	ю	R	R	ю	ю
And the first sector in the first sector i		Qout (mL) Ti	5543	2442	6075	N/0S	828	4897	007	3719	3583	3078	3070	2921	2616	2448	2147	1852	1697	1463
Although I > 1	ry and Secondary-Spaing of 5*Dia. of Pipe	Are a Replacement Radio- Malitiphy by the inverse of Maximum Agc, Nob tal	0	0.157894737	0210526316	0.263157895	0.315789474	0.368421053	0.421052632	0.473684211	0526315789	0578947368	0631578947	0.68421052.6	0.736842105	0.789473684	0.842105263	0.894736842	0.947368421	1
Other Image: Section (Section (Sectin (Section (Section (Section (Sect	%CRpe₽rima 0.	Normalized incubed Area Agg/Attotal	0	034906585	0.046542113	1058177642	0.06981317	1081449598	1093084227	0.104719755	1116355283	1 127990812	013962634	1151261899	1162897397	117632925	1 186168454	1 197803982	0.20943951	1.221075039
Hold Total	and Secondary-Touching	Are a Rept acoment Ratio- Autiply by the inverse of G Maximum Agc, Nubtal	0	0.157894737 (0210526316 0	0.263157895	0.315789474	0.368421053	0.421052632	0.473684211 (0536315789	0 8967968720	7P68721530	0.684210526 0	0.736842105 (0.789473684	0.842105263	0.894736942 ()	121/368421	1
Application Total Application (a) Total	VC Pipe-Primary	formalized outed Area log (Atostal	0	043633231	058177642	220227200	694997280	101810873	116355283	130899694	14544104	159988515	17632925	189077336	203621746	218166156	232710567	24754977	261799388	276343798
Policy 30 30 I I I I I I I I I I I I I I I I I I I	Side By Side	AreaReptacement Ratio- Mubiphy bythe inverse of Gr Maximum Agy/Abotal	0	0.157894737 0.	0.210526316 0.	0.263157895 0	0.315789474 0	0.368421053 0.	0.421052632 0	0.473684211 0	0 6823153620	0 8567968720	0.631578947 0	0684210526 0	0.736842105 0.	0.789473684 0	0.842105263 0	0.894736842 0	0.947368421 0	1 0
Policity Total	PIC	tomaized outed Area log/Atotial	0	684997280	116355283	14544104	174532925	303621746	232710567	261799388	602888062	31997703	3490585	378154671	407243492	436332313	465421134	494509955	523598776	362687596
Policity Applicity Manufactorian Manufactorian <th>Slats</th> <th>Are Reptacement Ratio- Addiptybythe inverse of G Maximum Agy/Abotal</th> <th>0</th> <th>0.157894737 0</th> <th>0.210526316 0</th> <th>0.263157895 0</th> <th>0.315789474 0</th> <th>0.369421053 0</th> <th>0.421052632 0</th> <th>0.473684211 0</th> <th>0.536315789 0</th> <th>0.578947368 0</th> <th>0.631578947</th> <th>0.684210526 0</th> <th>0.736842105 0</th> <th>0.789473684 0</th> <th>0.842105263 0</th> <th>0.894736842 0</th> <th>0.947368421 0</th> <th>1</th>	Slats	Are Reptacement Ratio- Addiptybythe inverse of G Maximum Agy/Abotal	0	0.157894737 0	0.210526316 0	0.263157895 0	0.315789474 0	0.369421053 0	0.421052632 0	0.473684211 0	0.536315789 0	0.578947368 0	0.631578947	0.684210526 0	0.736842105 0	0.789473684 0	0.842105263 0	0.894736842 0	0.947368421 0	1
OptionS Application Manual and application Manual an		omaized 1 ted Area 60/Atotal	0	1111111	148148148	185185185	111111	626262	296296296	33333333	37037037	201407407	******	481481481	518518519	95555555	8656565	62962963	19999999	MONEUNEUN
Apple 1 Apple 1 Manual lange		Normalize d Average Go	1	0.989829377 0.	0.965009915 0.	0.941853771 0.	0.911725197 0.	0.951053136 0.	0.813151666 0.	0.73146549 0.	0.699673767 0.	0.655280496 0.	0.614149555 0.	0.602635451 0.	0.533167018 0.	0.494338898 0.	0.467728523 0.5	0.412908591 0.	0.338665004 0.	0.34107337 0.
Apple Apple <th< th=""><th></th><th>Nomalized Pare Pressure-Gauge 14()/Pa)</th><th>1</th><th>0.99309.2863</th><th>0375057539</th><th>0.95663 8526</th><th>6082 870120</th><th>0.881043745</th><th>N777 62M60</th><th>0.72889.4858</th><th>1106142020</th><th>0.66481 1972</th><th>39982 22290</th><th>0.6072 S2494</th><th>1621797797</th><th>0507866462</th><th>0.48042.9777</th><th>0.4203 76055</th><th>0394305449</th><th>0339025326</th></th<>		Nomalized Pare Pressure-Gauge 14()/Pa)	1	0.99309.2863	0375057539	0.95663 8526	6082 870120	0.881043745	N777 62M60	0.72889.4858	1106142020	0.66481 1972	39982 22290	0.6072 S2494	1621797797	0507866462	0.48042.9777	0.4203 76055	0394305449	0339025326
Opticity Applicity Applicity <th< th=""><th></th><th>Namulaed Pore Pressure-Gauge 12)/29</th><th>-1</th><th>0.983741393</th><th>0.957727621</th><th>0.938026014</th><th>0.919089518</th><th>0.845830145</th><th>1296850870</th><th>0.744452946</th><th>0.695442234</th><th>0.6516832M</th><th>0.611323542</th><th>0.59372609</th><th>01530030504</th><th>0.494835501</th><th>0.45117052</th><th>0.407935409</th><th>0.38948508</th><th>0.335501148</th></th<>		Namulaed Pore Pressure-Gauge 12)/29	-1	0.983741393	0.957727621	0.938026014	0.919089518	0.845830145	1296850870	0.744452946	0.695442234	0.6516832M	0.611323542	0.59372609	01530030504	0.494835501	0.45117052	0.407935409	0.38948508	0.335501148
AppLu66 Perr Pressure Perr Pressure AppLu6 14 dVC (bpt Perr Pressure Perr Pressure AppLu6 Ap		e Romalized Pore Pessue-Gauge Paj 13(0°a)	1	0.992682457	0.962256894	0.930858477	11012220010	0.85634508	0.830348546	0.720970537	0.693813602	0.68335644	0.538497978	0.606970922	0.531677258	0.480361891	0.4615829	0.4103601	0.393221645	0.348738687
Optica5 Part Parties Part Part Part Part Part Part Part Part		2- Avg. Pon	5.211	5.158	5003	4.908	4751	4.487	4237	3.812	3.646	3.415	3200	3.140	2.778	2.576	2.437	2.152	2005	1777
Apple.65 Per homomony Ind Mrc Mayer Per homomony Ind Mrc Mayer Per homomony Municipation Ind Mrc Mayer Municipation 3 Municipation 1 Municipation 1 Municipation 1 Municipation 3 Municipation 4 Municipation 3 Municipa		- Pore Pressure Gauge 14)/Pa	5.212	5176	5002	4985	4747	4585	4192	3799	3694	3.465	3297	3165	2803	2647	2504	2191	2003	1767
Appl.ds Market Market Market Market		Pore Pressure- Gauge 12(kPa)	5.228	5.143	5.007	4.904	4.805	4422	4.208	3.892	3.641	3.407	3.195	3.104	2771	2.587	2.411	2.133	2.031	123
Model Model <th< th=""><th></th><th>"ore Pressure- Sauge 13(kPa)</th><th>5193</th><th>5.155</th><th>4.997</th><th>4.834</th><th>4.701</th><th>4.47</th><th>4.312</th><th>3.744</th><th>3.603</th><th>3.372</th><th>3.108</th><th>3.152</th><th>2.761</th><th>2.494</th><th>2.397</th><th>2.131</th><th>2.042</th><th>1.811</th></th<>		"ore Pressure- Sauge 13(kPa)	5193	5.155	4.997	4.834	4.701	4.47	4.312	3.744	3.603	3.372	3.108	3.152	2.761	2.494	2.397	2.131	2.042	1.811
8400 8400 8400 8400 8400 8400 8400 8400	\$,0=1.45	# of PVC Ripss 6	0		-7	5	9	2		6	10	ц	q	13	M	15	16	17	18	19
			Bun0	Bunt	Run2	Run3	Run4	BunS	Aun6	Run7	Bun8	Run9	Run 10	Aun 11	Run 12	Aun 13	Bun 14	Run 15	Aun 16	Run 17

المنسارات

Figure C.18: Raw Data from S/D=1.45, Unit weight=13.82 $\rm kN/m^3$

133

									_				_	_		
Insective Game 14	Uge on Value-Gauge 14	92.80539286	92.03708382	18968668168	83.17275258	15372971831	88.05340696	85,26077038	84 94919504	84 97162037	86.73317451	81 62625418	311217125	77.89450736	75.52629675	78.56361375
ann bhia Cara 12	ugoon ketu e-Gauge 12	9317718096	5193072655	9107614465	3038888205	89.2424641	90.47364586	8502150538	8710505655	8551996588	85.92395914	82.31894058	7865832371	78.74932553	7677825499	80116638884
uni 12 mars Canas 12	eon Value-Gauge 13 LL	5001M2002	93.005527M	92.73505761	89.85800325	89.97457519	789/6113/98	96. 39705882	86.91417622	86.32213336	85.81749599	10606126 28	79,71694904	30.35002825	78.69504915	81.48482059
adAverage Lugeon	Value U.g.	1	1992711 336	1380665275	1965631 674	3952342785	1961662 638	11325556117	1928085 372	1930442 999	09299631	1884793537	1851399323	1848265 259	1827721466	1860795 221
Momunia:	an in A ung	97622	92414 0	64327 0	S2184 0	0 26533	40804 0	50484 0	72445 0	0 25589	0273	0 88559	0 02549 0	4725 0	0 8406	0 05605
d ore Anarom luc	r ross Average un	30.990	5 92.321	81,201	1 89.803	8.497	1 29.434	5 85.890	2 86.311	1 85.600	997492	82.289	3 24.79	185.82	1 76.977	2 81.053
New militad Class	fear mail great FLow	1	0977213035	8408-581-60	N628526060	0.875734378	0.82.8912231	3465086940	0.73 081 7162	0.678239024	0.62 2218266	0556168773	0521452733	66296.68/0	0.454660851	0.456519192
Flow loss (Doue (Transi) an elli)	(Ubut/Time/Uengtr) (U/min/meter)	0.489434783	0.477304348	0.463304348	0.444347826	0.42773913	0.404869565	0.376	0.356956522	0.331304348	0.303913043	0.271652174	0.25469562	0.241130435	0.226956522	0.227913043
length	Interval (m)	940	0.46	0.46	046	0.46	0.46	0.46	0.46	046	046	046	046	046	0.46	046
n1) Time (m	up IIme (2	2	3	5	3	8	1 22	2	2	12	10	8	22	2	1
io- of Doutle	ror Cout(5617	5885 2885	5326	SIIL	4815	469.	4804	4105	3816	346	3124	202	2775	2610	1292
AreaReplacement Rab	Mal 10 pt y by the Inverse. Maximum Age (At obal	0	0.176470588	0.235294118	0.29411767	0.352941176	0.411764705	0.470588235	0.529411765	0.588235294	0.647058824	0.705882353	0.764705882	0.823529412	0.882352941	1794119610
- Normalized	Age, Atotal	0	0.034906585	0.046542113	0.058177642	0.06981317	0.081448598	0.093084227	0.104719755	0.116355283	0.127990812	013962634	0.151261899	0.162897397	0.174532925	0.196169454
Are a Replacement, Ratio	Muttiply by the inverse c Maximum Age, Anotal	0	0176470588	0.235294118	029411M20	0.352941176	0411764705	0.470588235	0529411765	0588235294	0.647058824	0.705882353	0.764705882	0823529412	0.882355941	177671190
Nomalized	Agr/Atotral	0	0.043633231	0.058177642	0.072722052	0.087266463	0.101810873	0.116355283	0.130899694	0.14544104	0.159988515	0.174532925	0.189077336	0.203621746	0.218166157	0.232710567
ea Replacement Ratio-	ардүрүртеплезе ог Мойтит Аду Алаза	0	0.176470588	0.235294118	0.294117647	0.352941176	0.411764705	0.470588235	0.529411765	0.588235294	0.647058824	0.705882553	0.764705882	0.823529412	0.882352941	0.941176471
Normalized A	Agc/R otal	0	0.087266453	0.116355283	0.14544104	0.174532925	0.203621746	0.232710567	0.261799388	0.29088309	0.31997703	0.34905585	0.378154671	0.407243492	0.436332313	0.465421134
Area Replacement Ratio-	Multipity by the inverse of Maximum Agc, Nootal	0	0.176470588	0.235294118	0.2941767	0.352941176	0.411764705	0.4705882255	0.529411765	0.588235294	0.647058204	0.705882353	0.764705882	0.823529412	0.882352941	174871192.0
Normalized	Agr.(Nitotal	0	0.1111111	0.148148148	0.185185185	0.2222222	0.259259299	0.296296296	0.333333333	12/03/037	0.407407407	0.45555555	0.481481481	0.518518519	0.55555556	0.59259293
Normalize d Average	Pore Pressure (KPa)	1	0.9843869	12505225610	0.942117289	0.910002539	0.86195735	0.833523737	0.787446052	0.736925616	0.669078445	0.628585936	0.612465093	0.581302361	0.561373445	0.542079208
Normalized Pore	Pressure-Gauge 14(kPa)	1	1998963660	962653962010	0.945738404	0.91031731	0.873646209	0.837925138	0.758403952	0.740832225	0.665779973	0 652233897	0.611248337	0.588257648	0.570967129	0.551205535
Nomalized Pore	Pre sure -Gauge 12(0%)	1	0.990461656	0.970431133	0.937809996	0.91434567	0.853681301	0.833942045	0.781762695	00203030904	0.674742465	0.629530713	0.617703167	0.584128195	0.563906905	0.542350248
Nomalized Pore	Presure-Gauge 13()/03)	1	0.97733765	0.951437821	0.941725385	0.905351352	0.858503142	0.828794515	0.782136736	0.730908398	0.666730147	0.623881165	0.608455522	0.571510189	0.549228718	0.532660446
Avg. Pore	Pressure (KPa)	5.222	5.170	5.080	4.948	4779	4527	4.378	4136	3.870	3.514	3.301	3.217	3.053	2.948	2.847
-e Pressure-	1 (6 <i>0</i>)(9)	5.263	5.186	5.157	4.983	4.791	4.598	4.41	4.202	3.899	3.504	3.328	3.217	3.096	3.005	2.901
Presure-Pon	e 12)/Pa) Ga	242	192	1087	1916	1793	1475	1371	1098	1874	1837	33	1238	1052	1996	843
essure-Pore-	13)0a) Gaug	51 5	8		1	15	305	, B	. 10.	88	10	92	8	10	18	1
PorePre	Cauge:	52	13	49	49	47.	45	43	41)	38	8	33	31	30	28	40
and pur the	# OF PIC R	0	m	-7	s	9	~	**	6	8	Ħ	a	13	2	15	16
		Aun 0	Run 1	Run2	Run 3	Bund	Runs	Aun 6	Run 7	Bun 8	Bun 9	Run 10	Run 11	Run 12	Run 13	Rin 14

Figure C.19: Raw Data from S/D=1.62, Unit weight=13.82 kN/m^3

	Lugeon Value Gauge 14	93,83161039	92.36514036	91.84830235	91 70469138	67214101-16	88.47023636	88.6335.357	87.62370733	84.25758138	24 76907812	82.06536798	84.21078148
	Lugeon Value-Gauge 12	94.0120211	92,8299156	61.81367N23	80.77564479	91729992716	9060188-16	201435807	88.03305826	30502217339905	86.04034899	83.12487035	83.41338656
	lu geon Value-Gurge 13	94 15684994	93.00992319	92,2250739	91.66845149	680/0582 16	2820382076	91.75017754	89.43273973	87.83575856	84 65930205	845727907	252H225E 148
	Nomali zed AverageLuge on Value	1	0.996534294	60422583720	0.968517153	0370400386	130303020	0.958311448	0.939962148	237282762	0.905871005	0.0855530096	0.893444103
	Ave rage luge on Value	93.99997214	92.73419616	67,96230739	91.04058538	31.21766565	90.43652361	90.08124937	88.35641573	86.24429409	85.15184922	83.24169439	11021582.58
	Normalized Flow Loss	1	0.980971012	0363166459	0.951449404	0.926373822	0.96270574	0827138538	0.770762938	22502501210	1521058990	185922990	1894522487
	Flow Loss (Qout /Time/Length) (L,friin/meter)	0.488956522	0.479652174	0.473391304	0.465217391	0.452956522	0.421826087	0.404434783	0.376869565	0.347478261	0.326969565	0.296173913	0.29069552
	le ngth ther vel (m)	940	940	940	9970	940	940	997	940	940	997	940	940
	me(mins) II	ю	ю	ю	Ю	ю	ю	ю	ю	ю	ю	ю	ю
	Qout (mL) Ta	5623	5516	SAM	2380	600S	4851	4651	4334	966	3759	3405	398
ryand Secondar y-Spacing of 7*Dia. of Pipe	Are a Re place ment Ratio- Multiply by the inverse of Maximum Agy/R otal	0	0.230769231	80526940510	0.384615385	0.461538462	0.538461538	0.615384615	0.692307692	0.769230769	0.846153846	0.923076923	1
ovcPipePrimar 05	Normalized 3 outed Area Agc/Atotal	0	0034906585	0.046542113	0.058177642	0.05381317	0.081448698	1224806600	0104719755	0116355283	0.127990812	0.13962634	0.151261869
and Secondary-Touching	M eaReplacementRatio- Multiply by the inverse of Meximum Agy/Atotal	0	0.230769231	806269406-0	0.394615385	0.461538462	0538461538	0.615384615	26970520062	69L0E269L0	0.846153846	0.923076923	1
PVC Ripe-Ariman	Normalized Srouted Area Agr/R otal	0	0.043633231	0.058177642	0.072723052	0.08726463	0.101810873	0.116355283	0.130899694	0.14544104	0.159988515	0.174532925	0.189077336
C Side By Side	AreaReplacement Ratio- Multiply by the inverse of Maximum Age, Alto tal	0	0.230769231	0.307692308	0.394615385	0.461538462	0.538461538	0.615384615	0.692307692	0.769290769	0.846153846	0.923076923	1
74	Normalized Grouted Area Agr(Atodal	0	0.087266463	0.116355283	0.14544104	0.174532925	0.203621746	0.232710567	0.261799388	002888062.0	031997703	034906585	178421876.0
Slats	Area Replacement Radio- MAJ tippy by the inverse of Maximum Agc, Rubital	0	0.230769231	0.307692908	0.384615385	0.461538462	0.538461538	0.615384615	0.692307692	0.76529709	0.846153846	0.923076323	
	Normalized Groube d'Are a Agr(Attot al	0	011111111	0.148148148	0185185185	02222222	6526526520	9629629670	0.3333333333	CEONEONE.D	0407070700	0.4444444	0.481481481
	Normalized Average Pore Pressure (1/P a)	1	0.994360782	0.989618712	0.982377443	0.954629926	9/166996810	0.863120795	0.819993592	0.774559436	0.7379686	0.684011535	0.665427748
	Normalized Pore Pre scure-Gauge 14()/9/a)	-1	0.996545769	0.9890616	0.973517559	0.954135483	0.914987526	0.875647668	0.825369411	0.791402802	0.739973134	0.692573402	0.662444828
	Normalized Pore Pressure-Gauge 12(VPa)		9622946560	0.991347818	0.996346856	0.954239589	0.882714963	0.854833685	0.82311094	0.770428764	0730436455	0685060565	844530073.0
	Normalized Pore Pressure-Gauge 13(JPa)	1	16529065610	01-989445985	0.97727704	0.955517042	0.892355093	184688460	0.811476388	0.76179724	L742500551/10	0.67436943	0.663778163
	Avg. Pare Pressure (NP a)	5.202	5.172	5.148	S.110	4.966	4664	4.490	4,265	4029	3839	3.558	3.461
	ore Pressure- iauge 14(kPa)	5.211	5193	SIS	5073	4972	4768	4583	4301	4124	3856	3609	3462
	re Pressure - P	5.201	S.167	5.156	5.122	498	459	4.48	4.28	400	379	358	3.455
	ure-Po Ma) Ga	5.193	5.157	5.133	S.075	4.962	4634	4.408	4.214	3.956	3.861	3.502	3.417
	e Press ge 13(
212	of PVC Ripss Gauge 13	0		-7	5	9	2	••	6	8	Ħ	ü	8

المنارات المستشارات

Figure C.20: Raw Data from S/D=2.17, Unit weight=13.82 $\rm kN/m^3$

REFERENCES

- Ajalloeian, R., Habibi, V., Sharifipour, M., and Azimian, A. (2012). "Evaluation
 Engineeing Geology Properties of Jamishan Dam Site with Emphais on Its
 Groutability." *Electronic Journal of Geotechnical Engineering* 17: 2777-2793.
- Akinyemi,O., Alabi, A., Ojo, A., and Adewusi, O. (2012) "Characterization of Unit weight and Porosity of Rocks Samples from Ogun State of Nigeria", *Canadian Center of Science and Education*, 1(2), 98-105.
- Aminfar, M. H., B. F. Azar, H. Ebadi, and H. Ahmadi. (2009). "Change of pore water pressure inside the foundation of alavian earthfill dam, iran: A comparison between observed and predicted values." *Journal of Applied Sciences (Faisalabad)* 9, (8): 1489-1495.
- Anagnostopoulos, C., and Hadjispyrou, S. (2004) "Laboratory Study of an Epoxy Resin Grouted Sand." *Grouted Improvement*, 8(1), 39-45.
- Arthur, H. (1977). "Teton Dam Failure." Engineering Foundation Conference Proceedings, New York, pg. 523.
- ASTM D4253-00, 2006, "Standard Test Methods for Maximum Index Unit weight and Unit Weight of Soils Using a Vibratory Table," *Annual Book of ASTM Standards*, Vol. 4.08, ASTM International, West Conshohocken, PA.
- ASTM D4254-00, 2006, "Standard Test Methods for Minimum Index Unit weight and Unit Weight of Soils and Calculation of Relative Unit weight," *Annual Book of ASTM Standards*, Vol. 4.08, ASTM International, West Conshohocken, PA.
- ASTM D6913-04, 2009, "Standard Test Methods for Particle-Size Distribution of Soils Using Sieve Analysis," *Annual Book of ASTM Standards*, Vol. 4.09, ASTM

International, West Conshohocken, PA.

- ASTM D854-10, 2009, "Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer," *Annual Book of ASTM Standards*, Vol. 4.08, ASTM International, West Conshohocken, PA.
- Awal, R., Nakagawa, H., Kawaike, K., and Baba Y. (2009) "Three Dimensional Transient Seepage and Slope Stability Analysis of Landslide Dam," Annuals of Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan, 52(B), 989-696.
- Beckhaus, K., Schmitz, S., and Schwarz, W. (2008). "Deep Cut-Off Walls constructed Under Dams with Trench Cutters." *Long Term Behavior of Dams*. 305-310.
- Berhane, G. and Walraevens, K. (2013). "Evaluating core drilling and lugeon test for the proposed geba dam site, northern ethiopia." Abstracts -Colloquium of African Geology (CAG) 24: 279-281.
- Bliss, J., Rushton, K. (1984). "The reliability of packer tests for estimating the hydraulic Conductivity of aquifers." *Quarterly Journal of Engineering Geology*. 17: 81-91.
- Bodocsi, A. and Bowers, M.T. (1991) "Permeability of Acrylate, Urethane, and Silicate Grout Sands with Chemicals." *Journal of Geotechnical Engineering*, 117(8), 1227-1244.
- Bruce D.A. (1982). "Aspects of Rock Grouting Practice on British Dams." ASCE Geotechnical Engineering Specialty Conference on Grouting, New Orleans, LA February 10-12, 1982, pp. 301-316.

- Bruce D.A (1992). "Current Technologies in Ground Treatment and In Situ Reinforcement." Proc. 2nd Interagency Symposium on Stabilization of Soils and Other Minerals, Metairie, LA. November 2-5, pp. 271-295.
- Cotton, E.N. and Matheson, G.M., (1990) "Numerical Simulation of Concrete Dam
 Foundation Seepage and Uplift Pressure Distribution", *Rock Mechanics Contributions and Challenges*, Hustrulid and Johnson, Eds., Balkema, Rotterdam.
- Gurocak, Z. and Alemdag, S. (2012). "Assessment of permeability and injection depth at the Atasu dam site (Turkey) based on experimental and Numerical analyses." *Bull Eng. Geol. Environ* 71:221-229.
- Hacker, Adam. (2014), *Personal Conversation*, Stantec Consulting Services, Lexington, KY, February, 2014.
- Hayward Baker. (2014), *Website*, http://www.haywardbaker.com/WhatWeDo/ Techniques/Default.aspx, February 15th, 2014.
- Hong, W., Yea, G., and Lee, H. (2003). "Cut-off effect by rock grouting in the area of dam foundation". ISOPE-2003:Thirteenth (2003) International Offshore and Polar Engineering Conference;Honolulu, HI; USA;25-30 May 2003 (May 25): 635-639.
- Houlsby, A.C., (1976). "Routine Interpretation of Lugeon Water-Test." *Quaterly Journal* of Engineering Geology, (9):303-313.
- Huff, J. (2010). "Investigation of Humboldt Geogauge for Quality Control of Compacted Subgrades." *Master's Thesis*, University of Kentucky, Lexington, KY.
- KGS (2012). "Sand and Gravel Resources." *Mineral and Fuel Resources Map of Kentucky*, Kentucky Geological Survey, Lexington, KY,

<http://www.uky.edu/KGS/im/sandgravel.htm>.

- Lirer, S., Flora, A., Evangelista A., Verdolotti, L., Lavorgna, M., Iannance, S. (2006)
 "Permeation Grouting of a Fine-Grained Pyroclastic Soil," *Ground Improvement*, 10(4), 135-145.
- Liua, J., Fenga, X., Ding, X., Zhang, J., and yueb, D. (2003). "Stability Assessment of Three-Gorges Dam Foundation, China, using Physical and Numerical Modeling—Part I: Physical Model Tests," *International Journal of Rock Mechanincs and Mining Sciences*, 40(2003), 609-631.
- Lugeon, M. (1933). Barrage et Geologie. Dunod. Paris.
- Luofenga, X., Xiangbaoa, D. Yangchao. (2012). "Study of Physical Model Experimetn of Dam's Seepage Stability base on Coastal Sand," *Proceedings of the 2012 International Conference on Modern Hydraulic Engineering*, Nanjing, Jiangsu Province, China.
- Nappi, M., L. Esposito, V. Piscopo, and G. Rega. (2005). "Hydraulic characterisation of some arenaceous rocks of molise (southern italy) through outcropping measurements and lugeon tests." *Engineering Geology*, 81, (1): 54-64.
- Powers, P., Corwin, A., Schmall, P. and Kaeck, E. (2007). "Construction Dewatering and Groundwater Control-New Methods and Applications," *John Wiley and Sons, Inc.*, Hoboken, New Jersey, Third Edition, 410-431.

Priebe, H. J., (1991). "Vibro Replacement-Design Criteria and Quality Control," *Deep Foundation Improvements: Design, Construction, and Testing,* ASTM STP 1089, Melvin I. Esrig and Robert C, Bachus, Eds., American Society for Testing and Materials, Philadelphia.

Priebe, H. J., (1995). "The Design of Vibro Replacement." Ground Engineering, 1-16.

- Quinn, P. M., J.A. Cherry and B.L. Parker, (2011). "Quantification of non-Darcian flow observed during packer testing in fractured sedimentary rock." *Water Resources Research*, 47,(9): 1-15
- Quinones-Rozo, C. (2010). "Lugeon Test Interpretation, Revisted." Collaborative Management of Integrated Watersheds. 405-414.
- Sadeghiyeh, S. M., M. Hashemi, and R. Ajalloeian. (2013). "Comparison of permeability and groutability of ostur dam site rock mass for grout curtain design." *Rock Mechanics and Rock Engineering*, 46, (2) (03): 341-357.
- Saeidi, O., Ramezanzadeh, A., Sereshki, F., and Jalali, M. 2013."Numerical modeling of the effects of joint hydraulic aperture, orientation and spacing on rock grouting using UDEC: A case study of Bakhtiary Dam of Iran." *Journal of Mining & Environment*, 4(1): 15-26.
- Sasaki, Kenji and Tosaka, Hiroyuki. (2012). "The study of quantification method for nondarcy effect in lugeon-test." *Journal of Japan Society of Dam Engineers*, 22, (3): 160-171.
- Uromeihy, A. and Farrokhi, R. (2012). "Evaluating groutability at the Kamal-Saleh Dam based on Lugeon tests." *Bull Eng.Geol. Environ*, 71:215-219.
- Veni, G., DuChene, H., Crawford, N., Groves, C., Huppert, G., Kastning, E., Olson, R. and Wheeler, B. (2001). "Living With Karst, A Fragile Foundation." AGI Environmental Awareness Series, 4: 1-64.
- Weaver, D. and Bruce, D. (2007) "Dam Foundation Grouting." American Society of Civil Engineers Press, Reston, Virginia, 321-331.

- Willowstick, (2012) "Willowstick Technology Used For Mapping and Modeling Groundwater Systems." *White Paper*, Willowstick Technologies, LLC, Draper, Utah.
- Zou, Y.J. and Zhou, X.W. (2012). "Study and application of key technology to simultaneous shaft drilling and grouting." *Tunnels & Tunneling International* (04): 130-133.

VITA

Elliot Nicholas Magoto graduated from the University of Kentucky with a Bachelors of Science in Civil Engineering. He graduated on December 2012 with Magna Cum Laude honors. Elliot passed the Fundamentals of Engineering exam and was awarded the Engineer in Training certificate in the Spring of 2012.

Personal Publications:

Magoto, E.N. and Bryson, L.S.(2013), "Evaluation of the Effectiveness of a Grout Curtain using a Physical Model", *Dam Safety 2013*, The Association of State Dam Safety Officials, Providence, RI, 8-12 September, 2013.

"Evaluation of the Effectiveness of a Grout Curtain using a Physical Model", Dam Safety 2013, The Association of State Dam Safety Officials, *Poster Presentation*. Providence, RI, 8-12 September, 2013.

